pluto_hdl_adi/library/intel/avl_adxcfg/avl_adxcfg.v

165 lines
6.1 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright (C) 2014-2023 Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/1ps
module avl_adxcfg #(
parameter ADDRESS_WIDTH = 10
) (
// reconfig sharing
input rcfg_clk,
input rcfg_reset_n,
input rcfg_in_read_0,
input rcfg_in_write_0,
input [ADDRESS_WIDTH-1:0] rcfg_in_address_0,
input [31:0] rcfg_in_writedata_0,
output [31:0] rcfg_in_readdata_0,
output rcfg_in_waitrequest_0,
input rcfg_in_read_1,
input rcfg_in_write_1,
input [ADDRESS_WIDTH-1:0] rcfg_in_address_1,
input [31:0] rcfg_in_writedata_1,
output [31:0] rcfg_in_readdata_1,
output rcfg_in_waitrequest_1,
output rcfg_out_read_0,
output rcfg_out_write_0,
output [ADDRESS_WIDTH-1:0] rcfg_out_address_0,
output [31:0] rcfg_out_writedata_0,
input [31:0] rcfg_out_readdata_0,
input rcfg_out_waitrequest_0,
output rcfg_out_read_1,
output rcfg_out_write_1,
output [ADDRESS_WIDTH-1:0] rcfg_out_address_1,
output [31:0] rcfg_out_writedata_1,
input [31:0] rcfg_out_readdata_1,
input rcfg_out_waitrequest_1
);
// internal registers
reg [ 1:0] rcfg_select = 'd0;
reg rcfg_read_int = 'd0;
reg rcfg_write_int = 'd0;
reg [ADDRESS_WIDTH-1:0] rcfg_address_int = 'd0;
reg [31:0] rcfg_writedata_int = 'd0;
reg [31:0] rcfg_readdata_int = 'd0;
reg rcfg_waitrequest_int_0 = 'd1;
reg rcfg_waitrequest_int_1 = 'd1;
// internal signals
wire [31:0] rcfg_readdata_s;
wire rcfg_waitrequest_s;
// xcvr sharing requires same bus (sw must make sure they are mutually exclusive access).
assign rcfg_out_read_0 = rcfg_read_int;
assign rcfg_out_write_0 = rcfg_write_int;
assign rcfg_out_address_0 = rcfg_address_int;
assign rcfg_out_writedata_0 = rcfg_writedata_int;
assign rcfg_out_read_1 = rcfg_read_int;
assign rcfg_out_write_1 = rcfg_write_int;
assign rcfg_out_address_1 = rcfg_address_int;
assign rcfg_out_writedata_1 = rcfg_writedata_int;
assign rcfg_in_readdata_0 = rcfg_readdata_int;
assign rcfg_in_readdata_1 = rcfg_readdata_int;
assign rcfg_in_waitrequest_0 = rcfg_waitrequest_int_0;
assign rcfg_in_waitrequest_1 = rcfg_waitrequest_int_1;
assign rcfg_readdata_s = rcfg_out_readdata_1 & rcfg_out_readdata_0;
assign rcfg_waitrequest_s = rcfg_out_waitrequest_1 & rcfg_out_waitrequest_0;
always @(negedge rcfg_reset_n or posedge rcfg_clk) begin
if (rcfg_reset_n == 0) begin
rcfg_select <= 2'd0;
rcfg_read_int <= 1'd0;
rcfg_write_int <= 1'd0;
rcfg_address_int <= 'd0;
rcfg_writedata_int <= 32'd0;
rcfg_readdata_int <= 32'd0;
rcfg_waitrequest_int_0 <= 1'b1;
rcfg_waitrequest_int_1 <= 1'b1;
end else begin
if (rcfg_select[1] == 1'b1) begin
if (rcfg_waitrequest_s == 1'b0) begin
rcfg_select <= 2'd0;
rcfg_read_int <= 1'b0;
rcfg_write_int <= 1'b0;
rcfg_address_int <= 'd0;
rcfg_writedata_int <= 32'd0;
end
rcfg_readdata_int <= rcfg_readdata_s;
rcfg_waitrequest_int_0 <= rcfg_waitrequest_s | rcfg_select[0];
rcfg_waitrequest_int_1 <= rcfg_waitrequest_s | ~rcfg_select[0];
end else if ((rcfg_in_read_0 == 1'b1) || (rcfg_in_write_0 == 1'b1)) begin
rcfg_select <= 2'b10;
rcfg_read_int <= rcfg_in_read_0;
rcfg_write_int <= rcfg_in_write_0;
rcfg_address_int <= rcfg_in_address_0;
rcfg_writedata_int <= rcfg_in_writedata_0;
rcfg_readdata_int <= 32'd0;
rcfg_waitrequest_int_0 <= 1'b1;
rcfg_waitrequest_int_1 <= 1'b1;
end else if ((rcfg_in_read_1 == 1'b1) || (rcfg_in_write_1 == 1'b1)) begin
rcfg_select <= 2'b11;
rcfg_read_int <= rcfg_in_read_1;
rcfg_write_int <= rcfg_in_write_1;
rcfg_address_int <= rcfg_in_address_1;
rcfg_writedata_int <= rcfg_in_writedata_1;
rcfg_readdata_int <= 32'd0;
rcfg_waitrequest_int_0 <= 1'b1;
rcfg_waitrequest_int_1 <= 1'b1;
end else begin
rcfg_select <= 2'd0;
rcfg_read_int <= 1'd0;
rcfg_write_int <= 1'd0;
rcfg_address_int <= 'd0;
rcfg_writedata_int <= 32'd0;
rcfg_readdata_int <= 32'd0;
rcfg_waitrequest_int_0 <= 1'b1;
rcfg_waitrequest_int_1 <= 1'b1;
end
end
end
endmodule