pluto_hdl_adi/library/axi_dacfifo/axi_dacfifo_wr.v

545 lines
19 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2016(c) Analog Devices, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// - Neither the name of Analog Devices, Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
// - The use of this software may or may not infringe the patent rights
// of one or more patent holders. This license does not release you
// from the requirement that you obtain separate licenses from these
// patent holders to use this software.
// - Use of the software either in source or binary form, must be run
// on or directly connected to an Analog Devices Inc. component.
//
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED.
//
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module axi_dacfifo_wr (
// dma fifo interface
dma_clk,
dma_data,
dma_ready,
dma_valid,
// request and syncronizaiton
dma_xfer_req,
dma_xfer_last,
// syncronization for the read side
axi_last_addr,
dma_last_addr,
axi_xfer_out,
// axi write address, write data and write response channels
axi_clk,
axi_resetn,
axi_awvalid,
axi_awid,
axi_awburst,
axi_awlock,
axi_awcache,
axi_awprot,
axi_awqos,
axi_awuser,
axi_awlen,
axi_awsize,
axi_awaddr,
axi_awready,
axi_wvalid,
axi_wdata,
axi_wstrb,
axi_wlast,
axi_wuser,
axi_wready,
axi_bvalid,
axi_bid,
axi_bresp,
axi_buser,
axi_bready,
axi_werror);
// parameters
parameter AXI_DATA_WIDTH = 512;
parameter DMA_DATA_WIDTH = 64;
parameter AXI_SIZE = 6; // axi_awsize format
parameter AXI_LENGTH = 15; // axi_awlength format
parameter AXI_ADDRESS = 32'h00000000;
parameter AXI_ADDRESS_LIMIT = 32'h00000000;
parameter DMA_MEM_ADDRESS_WIDTH = 8;
// for the syncronization buffer
localparam MEM_RATIO = AXI_DATA_WIDTH/DMA_DATA_WIDTH; // Max supported MEM_RATIO is 16
localparam AXI_MEM_ADDRESS_WIDTH = (MEM_RATIO == 1) ? DMA_MEM_ADDRESS_WIDTH :
(MEM_RATIO == 2) ? (DMA_MEM_ADDRESS_WIDTH - 1) :
(MEM_RATIO == 4) ? (DMA_MEM_ADDRESS_WIDTH - 2) :
(MEM_RATIO == 8) ? (DMA_MEM_ADDRESS_WIDTH - 3) :
(DMA_MEM_ADDRESS_WIDTH - 4);
// for the AXI interface
localparam AXI_BYTE_WIDTH = AXI_DATA_WIDTH/8;
localparam DMA_BYTE_WIDTH = DMA_DATA_WIDTH/8;
localparam AXI_AWINCR = (AXI_LENGTH + 1) * AXI_BYTE_WIDTH;
localparam DMA_BUF_THRESHOLD_HI = {(DMA_MEM_ADDRESS_WIDTH){1'b1}} - 4;
// dma fifo interface
input dma_clk;
input [(DMA_DATA_WIDTH-1):0] dma_data;
output dma_ready;
input dma_valid;
input dma_xfer_req;
input dma_xfer_last;
output [31:0] axi_last_addr;
output [31:0] dma_last_addr;
output axi_xfer_out;
// axi interface
input axi_clk;
input axi_resetn;
output axi_awvalid;
output [ 3:0] axi_awid;
output [ 1:0] axi_awburst;
output axi_awlock;
output [ 3:0] axi_awcache;
output [ 2:0] axi_awprot;
output [ 3:0] axi_awqos;
output [ 3:0] axi_awuser;
output [ 7:0] axi_awlen;
output [ 2:0] axi_awsize;
output [31:0] axi_awaddr;
input axi_awready;
output axi_wvalid;
output [(AXI_DATA_WIDTH-1):0] axi_wdata;
output [(AXI_BYTE_WIDTH-1):0] axi_wstrb;
output axi_wlast;
output [ 3:0] axi_wuser;
input axi_wready;
input axi_bvalid;
input [ 3:0] axi_bid;
input [ 1:0] axi_bresp;
input [ 3:0] axi_buser;
output axi_bready;
output axi_werror;
// registers
reg [(DMA_MEM_ADDRESS_WIDTH-1):0] dma_mem_waddr = 'd0;
reg [(DMA_MEM_ADDRESS_WIDTH-1):0] dma_mem_waddr_g = 'd0;
reg [(DMA_MEM_ADDRESS_WIDTH-1):0] dma_mem_addr_diff = 'd0;
reg [(AXI_MEM_ADDRESS_WIDTH-1):0] dma_mem_raddr_m1 = 'd0;
reg [(AXI_MEM_ADDRESS_WIDTH-1):0] dma_mem_raddr_m2 = 'd0;
reg [(AXI_MEM_ADDRESS_WIDTH-1):0] dma_mem_raddr = 'd0;
reg dma_ready = 1'b0;
reg dma_rst_m1 = 1'b0;
reg dma_rst_m2 = 1'b0;
reg [ 2:0] dma_mem_last_read_toggle_m = 3'b0;
reg [31:0] dma_addr_cnt = 32'b0;
reg [31:0] dma_last_addr = 32'b0;
reg [ 2:0] axi_xfer_req_m = 3'b0;
reg [ 2:0] axi_xfer_last_m = 3'b0;
reg [(DMA_MEM_ADDRESS_WIDTH-1):0] axi_mem_waddr_m1 = 'b0;
reg [(DMA_MEM_ADDRESS_WIDTH-1):0] axi_mem_waddr_m2 = 'b0;
reg [(DMA_MEM_ADDRESS_WIDTH-1):0] axi_mem_waddr = 'b0;
reg axi_mem_rvalid = 1'b0;
reg axi_mem_rvalid_d = 1'b0;
reg axi_mem_last = 1'b0;
reg axi_mem_last_d = 1'b0;
reg [(AXI_DATA_WIDTH-1):0] axi_mem_rdata = 'b0;
reg [(AXI_MEM_ADDRESS_WIDTH-1):0] axi_mem_raddr = 'd0;
reg [(AXI_MEM_ADDRESS_WIDTH-1):0] axi_mem_raddr_g = 'd0;
reg axi_mem_read_en = 1'b0;
reg axi_mem_read_en_d = 1'b0;
reg [(AXI_MEM_ADDRESS_WIDTH-1):0] axi_mem_addr_diff = 'b0;
reg axi_mem_last_read_toggle = 1'b0;
reg axi_reset = 1'b0;
reg axi_xfer_out = 1'b0;
reg [31:0] axi_last_addr = 'b0;
reg axi_awvalid = 1'b0;
reg [31:0] axi_awaddr = 32'b0;
reg axi_xfer_init = 1'b0;
reg axi_werror = 1'b0;
reg [ 3:0] axi_wvalid_counter = 4'b0;
reg axi_last_transaction = 1'b0;
reg axi_last_transaction_d = 1'b0;
// internal signals
wire [(DMA_MEM_ADDRESS_WIDTH):0] dma_mem_addr_diff_s;
wire [(DMA_MEM_ADDRESS_WIDTH-1):0] dma_mem_raddr_s;
wire dma_mem_last_read_s;
wire dma_mem_wea_s;
wire dma_rst_s;
wire [(AXI_MEM_ADDRESS_WIDTH-1):0] axi_mem_waddr_s;
wire [AXI_MEM_ADDRESS_WIDTH:0] axi_mem_addr_diff_s;
wire [(AXI_DATA_WIDTH-1):0] axi_mem_rdata_s;
wire axi_mem_rvalid_s;
wire axi_mem_last_s;
wire axi_mem_eot_s;
wire axi_waddr_ready_s;
wire axi_wready_s;
// binary to grey conversion
function [7:0] b2g;
input [7:0] b;
reg [7:0] g;
begin
g[7] = b[7];
g[6] = b[7] ^ b[6];
g[5] = b[6] ^ b[5];
g[4] = b[5] ^ b[4];
g[3] = b[4] ^ b[3];
g[2] = b[3] ^ b[2];
g[1] = b[2] ^ b[1];
g[0] = b[1] ^ b[0];
b2g = g;
end
endfunction
// grey to binary conversion
function [7:0] g2b;
input [7:0] g;
reg [7:0] b;
begin
b[7] = g[7];
b[6] = b[7] ^ g[6];
b[5] = b[6] ^ g[5];
b[4] = b[5] ^ g[4];
b[3] = b[4] ^ g[3];
b[2] = b[3] ^ g[2];
b[1] = b[2] ^ g[1];
b[0] = b[1] ^ g[0];
g2b = b;
end
endfunction
// Instantiations
// An asymmetric memory to transfer data from DMAC interface to AXI Memory Map
// interface
ad_mem_asym #(
.A_ADDRESS_WIDTH (DMA_MEM_ADDRESS_WIDTH),
.A_DATA_WIDTH (DMA_DATA_WIDTH),
.B_ADDRESS_WIDTH (AXI_MEM_ADDRESS_WIDTH),
.B_DATA_WIDTH (AXI_DATA_WIDTH))
i_mem_asym (
.clka (dma_clk),
.wea (dma_mem_wea_s),
.addra (dma_mem_waddr),
.dina (dma_data),
.clkb (axi_clk),
.addrb (axi_mem_raddr),
.doutb (axi_mem_rdata_s));
ad_axis_inf_rx #(.DATA_WIDTH(AXI_DATA_WIDTH)) i_axis_inf (
.clk (axi_clk),
.rst (axi_reset),
.valid (axi_mem_rvalid_d),
.last (axi_mem_last_d),
.data (axi_mem_rdata),
.inf_valid (axi_wvalid),
.inf_last (axi_wlast),
.inf_data (axi_wdata),
.inf_ready (axi_wready));
// fifo needs a reset
always @(posedge axi_clk) begin
if (axi_resetn == 1'b0) begin
axi_reset <= 1'b1;
end else begin
axi_reset <= 1'b0;
end
end
always @(posedge dma_clk) begin
dma_rst_m1 <= ~axi_resetn;
dma_rst_m2 <= dma_rst_m1;
end
assign dma_rst_s = dma_rst_m2;
// Write address generation for the asymmetric memory
// There is no underflow or overflow. All the data movements are controlled by
// this module.
assign dma_mem_addr_diff_s = {1'b1, dma_mem_waddr} - dma_mem_raddr_s;
assign dma_mem_raddr_s = (MEM_RATIO == 1) ? dma_mem_raddr :
(MEM_RATIO == 2) ? {dma_mem_raddr, 1'b0} :
(MEM_RATIO == 4) ? {dma_mem_raddr, 2'b0} :
(MEM_RATIO == 8) ? {dma_mem_raddr, 3'b0} :
{dma_mem_raddr, 4'b0};
assign dma_mem_last_read_s = dma_mem_last_read_toggle_m[2] ^ dma_mem_last_read_toggle_m[1];
assign dma_mem_wea_s = dma_xfer_req & dma_valid;
always @(posedge dma_clk) begin
if (dma_rst_s == 1'b1) begin
dma_mem_waddr <= 'h0;
dma_mem_waddr_g <= 'h0;
dma_mem_last_read_toggle_m <= 3'b0;
end else begin
dma_mem_last_read_toggle_m = {dma_mem_last_read_toggle_m[1:0], axi_mem_last_read_toggle};
if (dma_mem_wea_s == 1'b1) begin
dma_mem_waddr <= dma_mem_waddr + 8'b1;
end
if (dma_mem_last_read_s == 1'b1) begin
dma_mem_waddr <= 'h0;
end
dma_mem_waddr_g <= b2g(dma_mem_waddr);
end
end
// The memory module request data until reaches the high threshold.
always @(posedge dma_clk) begin
if (dma_rst_s == 1'b1) begin
dma_mem_addr_diff <= 'b0;
dma_mem_raddr_m1 <= 'b0;
dma_mem_raddr_m2 <= 'b0;
dma_mem_raddr <= 'b0;
dma_ready <= 1'b0;
end else begin
dma_mem_raddr_m1 <= axi_mem_raddr_g;
dma_mem_raddr_m2 <= dma_mem_raddr_m1;
dma_mem_raddr <= g2b(dma_mem_raddr_m2);
dma_mem_addr_diff <= dma_mem_addr_diff_s[DMA_MEM_ADDRESS_WIDTH-1:0];
if (dma_mem_addr_diff >= DMA_BUF_THRESHOLD_HI) begin
dma_ready <= 1'b0;
end else begin
dma_ready <= 1'b1;
end
end
end
// An absolute address counter with DMA's granularity, this address will be
// used on read back
always @(posedge dma_clk) begin
if (dma_rst_s == 1'b1) begin
dma_addr_cnt <= 32'b0;
dma_last_addr <= 32'b0;
end else begin
if((dma_valid == 1'b1) && (dma_xfer_req == 1'b1)) begin
dma_addr_cnt <= (dma_xfer_last == 1'b1) ? 32'b0 : dma_addr_cnt + 1;
dma_last_addr <= (dma_xfer_last == 1'b1) ? dma_addr_cnt : dma_last_addr;
end
end
end
// Read address generation for the asymmetric memory
// CDC for the memory write address, xfer_req and xfer_last
always @(posedge axi_clk) begin
if (axi_resetn == 1'b0) begin
axi_xfer_req_m <= 3'b0;
axi_xfer_last_m <= 3'b0;
axi_xfer_init <= 1'b0;
axi_mem_waddr_m1 <= 'b0;
axi_mem_waddr_m2 <= 'b0;
axi_mem_waddr <= 'b0;
end else begin
axi_xfer_req_m <= {axi_xfer_req_m[1:0], dma_xfer_req};
axi_xfer_last_m <= {axi_xfer_last_m[1:0], dma_xfer_last};
axi_xfer_init = ~axi_xfer_req_m[2] & axi_xfer_req_m[1];
axi_mem_waddr_m1 <= dma_mem_waddr_g;
axi_mem_waddr_m2 <= axi_mem_waddr_m1;
axi_mem_waddr <= g2b(axi_mem_waddr_m2);
end
end
// check if the AXI write channel is ready
assign axi_wready_s = ~axi_wvalid | axi_wready;
// check if there is enough data in the asymmetric memory
assign axi_mem_waddr_s = (MEM_RATIO == 1) ? axi_mem_waddr :
(MEM_RATIO == 2) ? axi_mem_waddr[(DMA_MEM_ADDRESS_WIDTH-1):1] :
(MEM_RATIO == 4) ? axi_mem_waddr[(DMA_MEM_ADDRESS_WIDTH-1):2] :
(MEM_RATIO == 8) ? axi_mem_waddr[(DMA_MEM_ADDRESS_WIDTH-1):3] :
axi_mem_waddr[(DMA_MEM_ADDRESS_WIDTH-1):4];
assign axi_mem_addr_diff_s = {1'b1, axi_mem_waddr_s} - axi_mem_raddr;
// The asymmetric memory have to have enough data for at least one AXI burst,
// before the controller start an AXI write transaction.
always @(posedge axi_clk) begin
if (axi_resetn == 1'b0) begin
axi_mem_read_en <= 1'b0;
axi_mem_read_en_d <= 1'b0;
axi_mem_addr_diff <= 'b0;
end else begin
axi_mem_addr_diff <= axi_mem_addr_diff_s[(AXI_MEM_ADDRESS_WIDTH-1):0];
if (axi_mem_read_en == 1'b0) begin
if (((axi_xfer_req_m[2] == 1'b1) && (axi_mem_addr_diff > AXI_LENGTH) && (axi_last_transaction_d == 1'b0)) ||
(axi_last_transaction == 1'b1) && (axi_last_transaction_d == 1'b0)) begin
axi_mem_read_en <= 1'b1;
end
end else if (axi_mem_last_s == 1'b1) begin
axi_mem_read_en <= 1'b0;
end
axi_mem_read_en_d <= axi_mem_read_en;
end
end
// If there is enough data and the AXI interface is ready, we can start to read
// out data from the memory
assign axi_mem_rvalid_s = axi_mem_read_en & axi_wready_s;
assign axi_mem_last_s = (axi_wvalid_counter == axi_awlen) ? axi_mem_rvalid_s : 1'b0;
assign axi_mem_eot_s = axi_wlast & axi_last_transaction;
always @(posedge axi_clk) begin
if (axi_resetn == 1'b0) begin
axi_mem_rvalid <= 1'b0;
axi_mem_rvalid_d <= 1'b0;
axi_mem_last <= 1'b0;
axi_mem_last_d <= 1'b0;
axi_mem_rdata <= 'b0;
axi_mem_raddr <= 'b0;
axi_wvalid_counter <= 4'b0;
axi_mem_last_read_toggle <= 1'b1;
axi_mem_raddr_g <= 8'b0;
end else begin
axi_mem_rvalid <= axi_mem_rvalid_s;
axi_mem_rvalid_d <= axi_mem_rvalid;
axi_mem_last <= axi_mem_last_s;
axi_mem_last_d <= axi_mem_last;
axi_mem_rdata <= axi_mem_rdata_s;
if (axi_mem_rvalid_s == 1'b1) begin
axi_mem_raddr <= axi_mem_raddr + 1;
axi_wvalid_counter <= (axi_wvalid_counter == axi_awlen) ? 4'b0 : axi_wvalid_counter + 1;
end
if (axi_mem_eot_s == 1'b1) begin
axi_mem_raddr <= 'b0;
axi_mem_last_read_toggle <= ~axi_mem_last_read_toggle;
end
axi_mem_raddr_g <= b2g(axi_mem_raddr);
end
end
always @(posedge axi_clk) begin
if (axi_resetn == 1'b0) begin
axi_last_transaction <= 1'b0;
axi_last_transaction_d <= 1'b0;
end else begin
if ((axi_xfer_req_m[2] == 1'b1) && (axi_xfer_last_m[2] == 1'b1)) begin
axi_last_transaction <= 1'b1;
end else if (axi_wlast == 1'b1) begin
axi_last_transaction <= 1'b0;
end
axi_last_transaction_d <= axi_last_transaction;
end
end
// AXI Memory Map interface write address channel
assign axi_awid = 4'b0000;
assign axi_awburst = 2'b01;
assign axi_awlock = 1'b0;
assign axi_awcache = 4'b0010;
assign axi_awprot = 3'b000;
assign axi_awqos = 4'b0000;
assign axi_awuser = 4'b0001;
assign axi_awlen = AXI_LENGTH;
assign axi_awsize = AXI_SIZE;
assign axi_waddr_ready_s = axi_mem_read_en & ~axi_mem_read_en_d;
always @(posedge axi_clk) begin
if (axi_resetn == 1'b0) begin
axi_awvalid <= 'd0;
axi_awaddr <= AXI_ADDRESS;
axi_last_addr <= AXI_ADDRESS;
axi_xfer_out <= 1'b0;
end else begin
if (axi_awvalid == 1'b1) begin
if (axi_awready == 1'b1) begin
axi_awvalid <= 1'b0;
end
end else begin
if (axi_waddr_ready_s == 1'b1) begin
axi_awvalid <= 1'b1;
end
end
if (axi_xfer_init == 1'b1) begin
axi_awaddr <= (axi_xfer_out == 1'b1) ? AXI_ADDRESS : axi_last_addr;
axi_xfer_out <= 1'b0;
end else if ((axi_awvalid == 1'b1) && (axi_awready == 1'b1)) begin
axi_awaddr <= axi_awaddr + AXI_AWINCR;
end
if(axi_xfer_last_m[2] == 1'b1) begin
axi_last_addr <= axi_awaddr;
axi_xfer_out <= 1'b1;
end
end
end
// write data channel controls
assign axi_wstrb = {AXI_BYTE_WIDTH{1'b1}};
assign axi_wuser = 4'b0000;
// response channel
assign axi_bready = 1'b1;
always @(posedge axi_clk) begin
if (axi_resetn == 1'b0) begin
axi_werror <= 'd0;
end else begin
axi_werror <= axi_bvalid & axi_bresp[1];
end
end
endmodule