pluto_hdl_adi/library/data_offload/data_offload_fsm.v

590 lines
18 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2018 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
/* This module controls the read and write access to the storage unit. It is
* used for both transmit and receive use cases
*/
module data_offload_fsm #(
parameter TX_OR_RXN_PATH = 0,
parameter WR_ADDRESS_WIDTH = 4,
parameter WR_DATA_WIDTH = 128,
parameter RD_ADDRESS_WIDTH = 4,
parameter RD_DATA_WIDTH = 128,
parameter SYNC_EXT_ADD_INTERNAL_CDC = 1) (
input up_clk,
// write control interface
input wr_clk,
input wr_resetn_in,
output reg wr_resetn_out,
input wr_valid_in,
output wr_valid_out,
output wr_ready,
output reg [WR_ADDRESS_WIDTH-1:0] wr_addr,
input wr_last,
input [WR_DATA_WIDTH/8-1:0] wr_tkeep,
// read control interface
input rd_clk,
input rd_resetn_in,
output reg rd_resetn_out,
input rd_ready,
output reg rd_valid = 1'b0,
output reg [RD_ADDRESS_WIDTH-1:0] rd_addr,
output rd_last,
output reg [RD_DATA_WIDTH/8-1:0] rd_tkeep,
input rd_oneshot, // 0 - CYCLIC; 1 - ONE_SHOT;
// Synchronization interface - synchronous to the device clock (ADC or DAC)
input init_req,
output init_ack,
input [ 1:0] sync_config,
input sync_external,
input sync_internal,
// FSM debug
output [ 1:0] wr_fsm_state,
output [ 1:0] rd_fsm_state,
output reg [63:0] sample_count
);
// FSM states
localparam WR_IDLE = 2'b00;
localparam WR_SYNC = 2'b01;
localparam WR_WRITE_TO_MEM = 2'b11;
localparam WR_WAIT_TO_END = 2'b10;
localparam RD_IDLE = 2'b00;
localparam RD_SYNC = 2'b01;
localparam RD_READ_FROM_MEM = 2'b11;
// Synchronization options
localparam AUTOMATIC = 2'b00;
localparam HARDWARE = 2'b01;
localparam SOFTWARE = 2'b10;
// helper parameters for last address, tkeep conversion
localparam LSB = (WR_ADDRESS_WIDTH > RD_ADDRESS_WIDTH) ? WR_ADDRESS_WIDTH - RD_ADDRESS_WIDTH :
RD_ADDRESS_WIDTH - WR_ADDRESS_WIDTH;
localparam POW2_LSB = 1 << LSB;
// internal registers
reg [WR_ADDRESS_WIDTH-1:0] wr_last_addr;
reg [WR_DATA_WIDTH/8-1:0] wr_last_keep;
reg [RD_DATA_WIDTH/8-1:0] rd_tkeep_last;
reg [RD_ADDRESS_WIDTH-1:0] rd_last_addr;
reg rd_isempty;
reg rd_init_req_d;
reg wr_init_req_d;
reg wr_ready_d;
// internal signals
wire wr_almost_full;
wire wr_init_req_s;
wire wr_init_req_pos_s;
wire wr_init_ack_s;
wire rd_isfull_s;
wire wr_isempty_s;
wire rd_empty_s;
wire rd_wr_last_s;
wire rd_init_req_s;
wire rd_init_req_neg_s;
wire rd_init_ack_s;
wire [WR_ADDRESS_WIDTH-1:0] rd_wr_last_addr_s;
wire [WR_DATA_WIDTH/8-1:0] rd_wr_last_tkeep_s;
wire wr_sync_external_s;
wire rd_sync_external_s;
wire wr_oneshot;
(* DONT_TOUCH = "TRUE" *) reg [1:0] wr_fsm_state = 2'b00;
(* DONT_TOUCH = "TRUE" *) reg [1:0] rd_fsm_state = 2'b00;
// Mealy state machine for write control
always @(posedge wr_clk) begin
if (wr_resetn_in == 1'b0) begin
wr_fsm_state <= WR_IDLE;
end else begin
case (wr_fsm_state)
WR_IDLE: begin
if (wr_init_req_s) begin
wr_fsm_state <= (TX_OR_RXN_PATH) ? WR_WRITE_TO_MEM : WR_SYNC;
end else begin
wr_fsm_state <= WR_IDLE;
end
end
WR_SYNC: begin
// do not lock the FSM if something goes wrong
if (TX_OR_RXN_PATH) begin
wr_fsm_state <= WR_WRITE_TO_MEM;
end else begin // SOURCE_IS_BACK_END
case (sync_config)
AUTOMATIC: begin
wr_fsm_state <= WR_WRITE_TO_MEM;
end
HARDWARE: begin
if (wr_sync_external_s) begin
wr_fsm_state <= WR_WRITE_TO_MEM;
end
end
SOFTWARE: begin
if (sync_internal) begin
wr_fsm_state <= WR_WRITE_TO_MEM;
end
end
default: begin
wr_fsm_state <= WR_WRITE_TO_MEM;
end
endcase
end
end
WR_WRITE_TO_MEM: begin
if ((wr_full || wr_last) && wr_valid_out) begin
wr_fsm_state <= WR_WAIT_TO_END;
end else begin
wr_fsm_state <= WR_WRITE_TO_MEM;
end
end
WR_WAIT_TO_END: begin
if (wr_isempty_s && (wr_oneshot || wr_init_req_s)) begin
wr_fsm_state <= WR_IDLE;
end else begin
wr_fsm_state <= WR_WAIT_TO_END;
end
end
default: wr_fsm_state <= WR_IDLE;
endcase
end
end
// the initialization interface (init_req) is edge sensitive
always @(posedge wr_clk) begin
wr_init_req_d <= wr_init_req_s;
end
assign wr_init_req_pos_s = ~wr_init_req_d & wr_init_req_s;
// status bits
assign wr_almost_full = (wr_addr == {{(WR_ADDRESS_WIDTH-1){1'b1}}, 1'b0}) ? 1'b1 : 1'b0;
assign wr_full = &wr_addr;
// generate INIT acknowledge signal in WRITE domain (in case of ADCs)
assign wr_init_ack_s = (wr_fsm_state == WR_SYNC) ? 1'b1 : 1'b0;
// write address generation
always @(posedge wr_clk) begin
if ((wr_resetn_in == 1'b0) || (wr_fsm_state == WR_IDLE)) begin
wr_addr <= 'b0;
end else begin
if (wr_valid_out) begin
wr_addr <= wr_addr + 1'b1;
end
end
end
// reset the storage unit's FMS before each transfer
always @(posedge wr_clk) begin
if ((wr_resetn_in == 1'b0) || (wr_fsm_state == WR_IDLE)) begin
wr_resetn_out <= 1'b0;
end else begin
wr_resetn_out <= 1'b1;
end
end
always @(posedge wr_clk) begin
if (wr_resetn_in == 1'b0) begin
wr_last_addr <= {WR_ADDRESS_WIDTH{1'b1}};
end else begin
wr_last_addr <= (wr_valid_out) ? wr_addr : wr_last_addr;
end
end
always @(posedge wr_clk) begin
if (wr_resetn_in == 1'b0) begin
wr_last_keep <= {WR_DATA_WIDTH/8{1'b1}};
end else begin
if (wr_last) begin
// if the SOURCE is at back-end, the interface is FIFO, set the tkeep
// to its default
wr_last_keep <= (TX_OR_RXN_PATH) ? wr_tkeep : {WR_DATA_WIDTH/8{1'b1}};
end
end
end
always @(posedge wr_clk) begin
wr_ready_d <= wr_ready && !(wr_valid_in && wr_last);
end
// flush out the DMA if the transfer is bigger than the storage size
assign wr_ready = ((wr_fsm_state == WR_WRITE_TO_MEM) ||
(TX_OR_RXN_PATH && ((wr_fsm_state == WR_WAIT_TO_END) && wr_ready_d))) ? 1'b1 : 1'b0;
// write control
assign wr_valid_out = (wr_fsm_state == WR_WRITE_TO_MEM) & wr_valid_in;
// sample counter for debug purposes, the value of the counter resets at
// every new incoming request
always @(posedge wr_clk) begin
if (wr_init_req_pos_s == 1'b1) begin
sample_count <= 64'b0;
end else begin
if (wr_ready && wr_valid_in) begin
sample_count <= sample_count + 1'b1;
end
end
end
// Mealy state machine for read control
always @(posedge rd_clk) begin
if (rd_resetn_in == 1'b0) begin
rd_fsm_state <= RD_IDLE;
end else begin
case (rd_fsm_state)
RD_IDLE: begin
if (((!TX_OR_RXN_PATH) & rd_isfull_s) || (rd_wr_last_s)) begin
if (TX_OR_RXN_PATH) begin
rd_fsm_state <= RD_SYNC;
end else begin
rd_fsm_state <= RD_READ_FROM_MEM;
end
end else begin
rd_fsm_state <= RD_IDLE;
end
end
RD_SYNC : begin
// do not lock the FSM if something goes wrong
if (!TX_OR_RXN_PATH) begin
rd_fsm_state <= RD_READ_FROM_MEM;
end else begin // TX_OR_RXN_PATH
case (sync_config)
AUTOMATIC: begin
rd_fsm_state <= RD_READ_FROM_MEM;
end
HARDWARE: begin
if (rd_sync_external_s) begin
rd_fsm_state <= RD_READ_FROM_MEM;
end
end
SOFTWARE: begin
if (sync_internal) begin
rd_fsm_state <= RD_READ_FROM_MEM;
end
end
default: begin
rd_fsm_state <= RD_READ_FROM_MEM;
end
endcase
end
end
// read until empty or next init_req
RD_READ_FROM_MEM : begin
if (rd_empty_s && rd_ready) begin
if (rd_init_req_s || (rd_oneshot && rd_last)) begin
rd_fsm_state <= RD_IDLE;
end else if (TX_OR_RXN_PATH && sync_config && (!rd_oneshot)) begin
rd_fsm_state <= RD_SYNC;
end else begin
rd_fsm_state <= RD_READ_FROM_MEM;
end
end else begin
rd_fsm_state <= RD_READ_FROM_MEM;
end
end
default : rd_fsm_state <= RD_IDLE;
endcase
end
end
// the initialization interface (init_req) is edge sensitive
// TODO: This should be redefined! Will work only of init_req is active
// during the whole DMA transfer (use xfer_req for driving init_req)
always @(posedge rd_clk) begin
rd_init_req_d <= rd_init_req_s;
end
assign rd_init_req_neg_s = rd_init_req_d & ~rd_init_req_s;
// generate INIT acknowledge signal in WRITE domain (in case of ADCs)
assign rd_init_ack_s = (rd_fsm_state == RD_SYNC) ? 1'b1 : 1'b0;
// Reset the storage unit's FSM before each transfer
always @(posedge rd_clk) begin
if ((rd_resetn_in == 1'b0) || (rd_fsm_state == RD_IDLE)) begin
rd_resetn_out <= 1'b0;
end else begin
rd_resetn_out <= 1'b1;
end
end
// read address generation
always @(posedge rd_clk) begin
if (rd_fsm_state != RD_READ_FROM_MEM) begin
rd_addr <= 'b0;
end else begin
if (rd_valid) begin
if (rd_oneshot)
rd_addr <= (rd_last_addr == rd_addr) ? rd_addr : rd_addr + 1'b1;
else
rd_addr <= (rd_last_addr == rd_addr) ? {RD_ADDRESS_WIDTH{1'b0}} : rd_addr + 1'b1;
end
end
end
assign rd_empty_s = (rd_addr == rd_last_addr) ? 1'b1 : 1'b0;
assign rd_last = rd_oneshot & rd_empty_s;
always @(posedge rd_clk) begin
if (rd_resetn_in == 1'b0) begin
rd_isempty <= 1'b0;
end else begin
rd_isempty <= rd_empty_s;
end
end
always @(posedge rd_clk) begin
if (rd_resetn_in == 1'b0) begin
rd_valid <= 1'b0;
end else begin
if ((rd_ready) && (rd_fsm_state == RD_READ_FROM_MEM) && !(rd_valid && rd_last && rd_oneshot)) begin
rd_valid <= 1'b1;
end else begin
rd_valid <= 1'b0;
end
end
end
// CDC circuits
sync_event #(
.NUM_OF_EVENTS (1),
.ASYNC_CLK (1))
i_wr_empty_sync (
.in_clk (rd_clk),
.in_event (rd_isempty),
.out_clk (wr_clk),
.out_event (wr_isempty_s)
);
sync_event #(
.NUM_OF_EVENTS (1),
.ASYNC_CLK(1))
i_rd_full_sync (
.in_clk (wr_clk),
.in_event (wr_almost_full),
.out_clk (rd_clk),
.out_event (rd_isfull_s)
);
sync_event #(
.NUM_OF_EVENTS (1),
.ASYNC_CLK (1))
i_rd_wr_last_sync (
.in_clk (wr_clk),
.in_event ((wr_last & wr_valid_in)),
.out_clk (rd_clk),
.out_event (rd_wr_last_s)
);
sync_bits #(
.NUM_OF_BITS (1),
.ASYNC_CLK (1))
i_wr_oneshot_sync (
.in_bits (rd_oneshot),
.out_clk (wr_clk),
.out_resetn (1'b1),
.out_bits (wr_oneshot)
);
sync_bits #(
.NUM_OF_BITS (1),
.ASYNC_CLK (1))
i_rd_init_req_sync (
.in_bits (init_req),
.out_clk (rd_clk),
.out_resetn (1'b1),
.out_bits (rd_init_req_s)
);
sync_bits #(
.NUM_OF_BITS (1),
.ASYNC_CLK (1))
i_wr_init_req_sync (
.in_bits (init_req),
.out_clk (wr_clk),
.out_resetn (1'b1),
.out_bits (wr_init_req_s)
);
generate if (TX_OR_RXN_PATH == 0) begin : adc_init_sync
sync_event #(
.NUM_OF_EVENTS (1),
.ASYNC_CLK (1))
i_rd_init_ack_sync (
.in_clk (wr_clk),
.in_event (wr_init_ack_s),
.out_clk (rd_clk),
.out_event (init_ack)
);
end else begin : dac_init_sync
sync_event #(
.NUM_OF_EVENTS (1),
.ASYNC_CLK (1))
i_wr_init_ack_sync (
.in_clk (rd_clk),
.in_event (rd_init_ack_s),
.out_clk (wr_clk),
.out_event (init_ack)
);
end
endgenerate
// convert write address and last/keep to read address and last/keep
sync_bits #(
.NUM_OF_BITS (WR_ADDRESS_WIDTH),
.ASYNC_CLK (1))
i_rd_last_address (
.in_bits (wr_last_addr),
.out_clk (rd_clk),
.out_resetn (1'b1),
.out_bits (rd_wr_last_addr_s)
);
sync_bits #(
.NUM_OF_BITS (WR_DATA_WIDTH/8),
.ASYNC_CLK (1))
i_rd_last_keep (
.in_bits (wr_last_keep),
.out_clk (rd_clk),
.out_resetn (1'b1),
.out_bits (rd_wr_last_tkeep_s)
);
// upsizing - WR_DATA_WIDTH < RD_DATA_WIDTH
generate if (WR_ADDRESS_WIDTH > RD_ADDRESS_WIDTH) begin
always @(posedge rd_clk) begin
rd_last_addr <= rd_wr_last_addr_s[WR_ADDRESS_WIDTH-1 : LSB];
end
// the read tkeep will be wider than the write tkeep, and its value
// depends on when the write tlast was asserted
always @(posedge rd_clk) begin :tkeep_gen
integer i;
for (i = 0; i < POW2_LSB; i = i + 1) begin : a_tkeep
if (rd_last_addr[LSB-1:0] < i)
rd_tkeep_last[(i+1)*WR_DATA_WIDTH/8-1 -: WR_DATA_WIDTH/8] <= {WR_DATA_WIDTH/8{1'b0}};
else
rd_tkeep_last[(i+1)*WR_DATA_WIDTH/8-1 -: WR_DATA_WIDTH/8] <= (i == 0) ? rd_wr_last_tkeep_s : {WR_DATA_WIDTH/8{1'b1}};
end
end
end else if (WR_ADDRESS_WIDTH < RD_ADDRESS_WIDTH) begin // downsizing - WR_DATA_WIDTH > RD_DATA_WIDTH or equal
always @(posedge rd_clk) begin
rd_tkeep_last <= rd_wr_last_tkeep_s[RD_DATA_WIDTH/8-1 : 0];
rd_last_addr <= {rd_wr_last_addr_s, {LSB{1'b1}}};
end
end else begin
always @(posedge rd_clk) begin
rd_tkeep_last <= rd_wr_last_tkeep_s;
rd_last_addr <= rd_wr_last_addr_s;
end
end
endgenerate
always @(posedge rd_clk) begin
if (rd_fsm_state == RD_IDLE) begin
rd_tkeep <= {(RD_DATA_WIDTH/8){1'b1}};
end else begin
if (rd_empty_s && rd_ready)
rd_tkeep <= rd_tkeep_last;
else if (rd_ready)
rd_tkeep <= {(RD_DATA_WIDTH/8){1'b1}};
end
end
// When SYNC_EXT_ADD_INTERNAL_CDC is deasserted, one of these signals will end
// up being synchronized to the "wrong" clock domain. This shouldn't matter
// because the incorrectly synchronized signal is guarded by a synthesis constant.
sync_bits #(
.NUM_OF_BITS (1),
.ASYNC_CLK (SYNC_EXT_ADD_INTERNAL_CDC))
i_sync_wr_sync (
.in_bits ({ sync_external }),
.out_clk (wr_clk),
.out_resetn (1'b1),
.out_bits ({ wr_sync_external_s })
);
sync_bits #(
.NUM_OF_BITS (1),
.ASYNC_CLK (SYNC_EXT_ADD_INTERNAL_CDC))
i_sync_rd_sync (
.in_bits ({ sync_external }),
.out_clk (rd_clk),
.out_resetn (1'b1),
.out_bits ({ rd_sync_external_s })
);
endmodule