pluto_hdl_adi/library/common/up_delay_cntrl.v

219 lines
7.1 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module up_delay_cntrl #(
// parameters
parameter DISABLE = 0,
parameter INIT_DELAY = 0,
parameter DATA_WIDTH = 8,
parameter BASE_ADDRESS = 6'h02) (
// delay interface
input delay_clk,
output delay_rst,
input delay_locked,
// io interface
output [(DATA_WIDTH-1):0] up_dld,
output [((DATA_WIDTH*5)-1):0] up_dwdata,
input [((DATA_WIDTH*5)-1):0] up_drdata,
// processor interface
input up_rstn,
input up_clk,
input up_wreq,
input [13:0] up_waddr,
input [31:0] up_wdata,
output up_wack,
input up_rreq,
input [13:0] up_raddr,
output [31:0] up_rdata,
output up_rack);
generate
if (DISABLE == 1) begin
assign up_wack = 1'd0;
assign up_rack = 1'd0;
assign up_rdata = 32'd0;
assign up_dld = 'd0;
assign up_dwdata = 'd0;
assign delay_rst = 1'd0;
end else begin
// internal registers
reg up_preset = 'd0;
reg up_wack_int = 'd0;
reg up_rack_int = 'd0;
reg [31:0] up_rdata_int = 'd0;
reg up_dlocked_m1 = 'd0;
reg up_dlocked_m2 = 'd0;
reg up_dlocked_m3 = 'd0;
reg up_dlocked = 'd0;
reg [(DATA_WIDTH-1):0] up_dld_int = 'd0;
reg [((DATA_WIDTH*5)-1):0] up_dwdata_int = 'd0;
// internal signals
wire up_wreq_s;
wire up_rreq_s;
wire [ 4:0] up_rdata_s;
wire [(DATA_WIDTH-1):0] up_drdata4_s;
wire [(DATA_WIDTH-1):0] up_drdata3_s;
wire [(DATA_WIDTH-1):0] up_drdata2_s;
wire [(DATA_WIDTH-1):0] up_drdata1_s;
wire [(DATA_WIDTH-1):0] up_drdata0_s;
wire [(DATA_WIDTH-1):0] up_dld_s;
wire [((DATA_WIDTH*5)-1):0] up_dwdata_s;
wire [(DATA_WIDTH-1):0] up_dinit_s;
wire [((DATA_WIDTH*5)-1):0] up_dinitdata_s;
wire delay_rst_s;
// variables
genvar n;
// decode block select
assign up_wreq_s = (up_waddr[13:8] == BASE_ADDRESS) ? up_wreq : 1'b0;
assign up_rreq_s = (up_raddr[13:8] == BASE_ADDRESS) ? up_rreq : 1'b0;
assign up_rdata_s[4] = | up_drdata4_s;
assign up_rdata_s[3] = | up_drdata3_s;
assign up_rdata_s[2] = | up_drdata2_s;
assign up_rdata_s[1] = | up_drdata1_s;
assign up_rdata_s[0] = | up_drdata0_s;
for (n = 0; n < DATA_WIDTH; n = n + 1) begin: g_drd
assign up_drdata4_s[n] = (up_raddr[7:0] == n) ? up_drdata[((n*5)+4)] : 1'd0;
assign up_drdata3_s[n] = (up_raddr[7:0] == n) ? up_drdata[((n*5)+3)] : 1'd0;
assign up_drdata2_s[n] = (up_raddr[7:0] == n) ? up_drdata[((n*5)+2)] : 1'd0;
assign up_drdata1_s[n] = (up_raddr[7:0] == n) ? up_drdata[((n*5)+1)] : 1'd0;
assign up_drdata0_s[n] = (up_raddr[7:0] == n) ? up_drdata[((n*5)+0)] : 1'd0;
end
// processor interface
assign up_wack = up_wack_int;
assign up_rack = up_rack_int;
assign up_rdata = up_rdata_int;
always @(posedge up_clk) begin
if (up_rstn == 0) begin
up_preset <= 1'd1;
up_wack_int <= 'd0;
up_rack_int <= 'd0;
up_rdata_int <= 'd0;
up_dlocked_m1 <= 'd0;
up_dlocked_m2 <= 'd0;
up_dlocked_m3 <= 'd0;
up_dlocked <= 'd0;
end else begin
up_preset <= 1'd0;
up_wack_int <= up_wreq_s;
up_rack_int <= up_rreq_s;
if (up_rreq_s == 1'b1) begin
if (up_dlocked == 1'b0) begin
up_rdata_int <= 32'hffffffff;
end else begin
up_rdata_int <= {27'd0, up_rdata_s};
end
end else begin
up_rdata_int <= 32'd0;
end
up_dlocked_m1 <= delay_locked;
up_dlocked_m2 <= up_dlocked_m1;
up_dlocked_m3 <= up_dlocked_m2;
up_dlocked <= up_dlocked_m3;
end
end
// init delay values (after delay locked)
for (n = 0; n < DATA_WIDTH; n = n + 1) begin: g_dinit
assign up_dinit_s[n] = up_dlocked_m2 & ~up_dlocked_m3;
assign up_dinitdata_s[((n*5)+4):(n*5)] = INIT_DELAY;
end
// write does not hold- read back what goes into effect.
for (n = 0; n < DATA_WIDTH; n = n + 1) begin: g_dwr
assign up_dld_s[n] = (up_waddr[7:0] == n) ? up_wreq_s : 1'b0;
assign up_dwdata_s[((n*5)+4):(n*5)] = (up_waddr[7:0] == n) ?
up_wdata[4:0] : up_dwdata_int[((n*5)+4):(n*5)];
end
assign up_dld = up_dld_int;
assign up_dwdata = up_dwdata_int;
always @(posedge up_clk) begin
if (up_rstn == 0) begin
up_dld_int <= 'd0;
up_dwdata_int <= 'd0;
end else begin
up_dld_int <= up_dld_s | up_dinit_s;
if ((up_dlocked_m2 == 1'b1) && (up_dlocked_m3 == 1'b0)) begin
up_dwdata_int <= up_dinitdata_s;
end else if (up_wreq_s == 1'b1) begin
up_dwdata_int <= up_dwdata_s;
end
end
end
// resets
assign delay_rst = delay_rst_s;
ad_rst i_delay_rst_reg (
.rst_async (up_preset),
.clk (delay_clk),
.rstn (),
.rst (delay_rst_s));
end
endgenerate
endmodule
// ***************************************************************************
// ***************************************************************************