pluto_hdl_adi/library/util_pmod_adc/util_pmod_adc.v

318 lines
11 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2011(c) Analog Devices, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// - Neither the name of Analog Devices, Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
// - The use of this software may or may not infringe the patent rights
// of one or more patent holders. This license does not release you
// from the requirement that you obtain separate licenses from these
// patent holders to use this software.
// - Use of the software either in source or binary form, must be run
// on or directly connected to an Analog Devices Inc. component.
//
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED.
//
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
// This core supports pmods with AD7091R, it controls a simple three wire
// SPI interface with an additional control line for conversion start
// NOTE: The maximum clock rate is 100 Mhz, the SPI interface clock is always
// half of the core's clock.
`timescale 1ns/1ns
module util_pmod_adc (
// clock and reset signals
clk,
reset,
// dma interface
adc_data,
adc_valid,
adc_enable,
adc_dbg,
// adc interface (clk, data, cs and conversion start)
adc_sdo,
adc_sclk,
adc_cs_n,
adc_convst_n
);
// parameters and local parameters
parameter real FPGA_CLOCK_FREQ = 100; // FPGA clock frequency [MHz] NOTE: this is the maximum supported frequency
parameter real ADC_CYCLE_TIME = 1.000; // minimum time between two ADC conversions [us]
parameter real ADC_CONVST_TIME = 0.010; // minimum time to keep /CONVST low [us]
parameter real ADC_CONVERT_TIME = 0.650; // conversion time [us]
parameter ADC_SCLK_PERIODS = 5'd12;
parameter ADC_RESET_SCLK_PERIODS = 4'd3;
// ADC states
localparam ADC_SW_RESET_STATE = 8'b00000001;
localparam ADC_IDLE_STATE = 8'b00000010;
localparam ADC_START_CNV_STATE = 8'b00000100;
localparam ADC_WAIT_CNV_DONE_STATE = 8'b00001000;
localparam ADC_WAIT_DATA_VALID_STATE = 8'b00010000;
localparam ADC_READ_CNV_RESULT = 8'b00100000;
localparam ADC_END_CNV_STATE = 8'b01000000;
localparam ADC_DATAREADY_STATE = 8'b10000000;
// ADC timing
localparam [6:0] ADC_CYCLE_CNT = FPGA_CLOCK_FREQ * ADC_CYCLE_TIME - 1;
localparam [6:0] ADC_CONVST_CNT = FPGA_CLOCK_FREQ * ADC_CONVST_TIME - 1;
localparam [6:0] ADC_CONVERT_CNT = FPGA_CLOCK_FREQ * ADC_CONVERT_TIME - 1;
// clock and reset signals
input clk; // system clock (100 MHz)
input reset; // active high reset signal
// dma interface
output [15:0] adc_data;
output adc_valid;
output adc_enable;
output [ 7:0] adc_dbg; // signals that the first data acquisition has been performed
// adc interface
input adc_sdo;
output adc_sclk;
output adc_cs_n;
output adc_convst_n;
reg [15:0] adc_data = 'd0;
reg adc_valid = 'b0;
reg adc_enable = 'b0;
reg [ 7:0] adc_dbg = 'b0;
reg adc_clk = 'd0;
reg [ 7:0] adc_state = 'b0; // current state for the ADC control state machine
reg [ 7:0] adc_next_state = 'b0; // next state for the ADC control state machine
reg [ 7:0] adc_state_nc_m1 = 'b0; // current state for the ADC state machine in the ADC clock domain sampled on the falling edge
reg [ 7:0] adc_state_pc_m1 = 'b0; // current state for the ADC state machine in the ADC clock domain sampled on the rising edge
reg [ 6:0] adc_tcycle_cnt = 'b0;
reg [ 6:0] adc_tconvst_cnt = 'b0;
reg [ 6:0] adc_tconvert_cnt = 'b0;
reg [ 4:0] sclk_clk_cnt = 'b0;
reg adc_cnv_s = 'b0;
reg adc_clk_en = 1'b0;
reg adc_cs_n_s = 'b0;
reg [15:0] adc_data_s = 'b0;
reg adc_sw_reset = 'b0;
reg data_rd_ready_s = 'b0;
// Assign/Always Blocks
assign adc_sclk = adc_clk & adc_clk_en;
assign adc_cs_n = adc_cs_n_s;
assign adc_convst_n = adc_cnv_s;
always @(negedge clk) begin
if(reset == 1'b1) begin
adc_valid <= 1'b0;
adc_enable <= 1'b0;
end else begin
adc_valid <= data_rd_ready_s;
adc_enable <= 1'b1;
if(adc_valid == 1'b1) begin
adc_data <= adc_data_s;
end
end
end
// generate ADC clock, max rate is 50 Mhz
always @(posedge clk) begin
adc_clk<= ~adc_clk;
end
// update the ADC timing counters
always @(posedge clk)
begin
if(reset == 1'b1) begin
adc_tcycle_cnt <= 0;
adc_tconvst_cnt <= ADC_CONVST_CNT;
adc_tconvert_cnt <= ADC_CONVERT_CNT;
end else begin
if(adc_tcycle_cnt != 1'b0) begin
adc_tcycle_cnt <= adc_tcycle_cnt - 7'h1;
end
else if(adc_state == ADC_IDLE_STATE || adc_state == ADC_SW_RESET_STATE) begin
adc_tcycle_cnt <= ADC_CYCLE_CNT;
end
if(adc_state == ADC_START_CNV_STATE) begin
adc_tconvst_cnt <= adc_tconvst_cnt - 7'h1;
end
else begin
adc_tconvst_cnt <= ADC_CONVST_CNT;
end
if(adc_state == ADC_WAIT_CNV_DONE_STATE) begin
adc_tconvert_cnt <= adc_tconvert_cnt - 7'h1;
end
else begin
adc_tconvert_cnt <= ADC_CONVERT_CNT;
end
end
end
// determine when the ADC clock is valid to be sent to the ADC
always @(negedge adc_clk) begin
adc_state_nc_m1 <= adc_state;
adc_clk_en <= ((adc_state_nc_m1 == ADC_WAIT_DATA_VALID_STATE) ||
(adc_state_nc_m1 == ADC_READ_CNV_RESULT) &&
((sclk_clk_cnt != 0) ||
((adc_sw_reset == 1'b1) &&
(sclk_clk_cnt == ADC_SCLK_PERIODS - ADC_RESET_SCLK_PERIODS)))) ? 1'b1 : 1'b0;
end
// read data from the ADC
always @(negedge adc_clk) begin
adc_state_pc_m1 <= adc_state;
if(adc_clk_en == 1'b1) begin
adc_data_s <= {3'b0, adc_data_s[11:0], adc_sdo};
sclk_clk_cnt <= sclk_clk_cnt - 5'h1;
end
else if(adc_state_pc_m1 != ADC_READ_CNV_RESULT && adc_state_pc_m1 != ADC_END_CNV_STATE) begin
adc_data_s <= 16'h0;
sclk_clk_cnt <= ADC_SCLK_PERIODS - 1;
end
end
// update the ADC current state and the control signals
always @(posedge clk) begin
if(reset == 1'b1) begin
adc_state <= ADC_SW_RESET_STATE;
adc_dbg <= 1'b0;
end
else begin
adc_state <= adc_next_state;
adc_dbg <= adc_state;
case (adc_state)
ADC_SW_RESET_STATE: begin
adc_cnv_s <= 1'b1;
adc_cs_n_s <= 1'b1;
data_rd_ready_s <= 1'b0;
adc_sw_reset <= 1'b1;
end
ADC_IDLE_STATE: begin
adc_cnv_s <= 1'b1;
adc_cs_n_s <= 1'b1;
data_rd_ready_s <= 1'b0;
adc_sw_reset <= 1'b0;
end
ADC_START_CNV_STATE: begin
adc_cnv_s <= 1'b0;
adc_cs_n_s <= 1'b1;
data_rd_ready_s <= 1'b0;
end
ADC_WAIT_CNV_DONE_STATE: begin
adc_cnv_s <= 1'b1;
adc_cs_n_s <= 1'b1;
data_rd_ready_s <= 1'b0;
end
ADC_WAIT_DATA_VALID_STATE: begin
adc_cnv_s <= 1'b1;
adc_cs_n_s <= 1'b1;
data_rd_ready_s <= 1'b0;
end
ADC_READ_CNV_RESULT: begin
adc_cnv_s <= 1'b1;
adc_cs_n_s <= 1'b0;
data_rd_ready_s <= 1'b0;
end
ADC_END_CNV_STATE: begin
adc_cnv_s <= 1'b1;
adc_cs_n_s <= 1'b0;
data_rd_ready_s <= 1'b0;
end
ADC_DATAREADY_STATE: begin
adc_cnv_s <= 1'b1;
adc_cs_n_s <= 1'b0;
data_rd_ready_s <= 1'b1;
end
endcase
end
end
// update the ADC next state
always @(adc_state, adc_tcycle_cnt, adc_tconvst_cnt, adc_tconvert_cnt, sclk_clk_cnt, adc_sw_reset) begin
adc_next_state <= adc_state;
case (adc_state)
ADC_SW_RESET_STATE: begin
adc_next_state <= ADC_START_CNV_STATE;
end
ADC_IDLE_STATE: begin
if(adc_tcycle_cnt == 0) begin
adc_next_state <= ADC_START_CNV_STATE;
end
end
ADC_START_CNV_STATE: begin
if(adc_tconvst_cnt == 0) begin
adc_next_state <= ADC_WAIT_CNV_DONE_STATE;
end
end
ADC_WAIT_CNV_DONE_STATE: begin
if(adc_tconvert_cnt == 0) begin
adc_next_state <= ADC_WAIT_DATA_VALID_STATE;
end
end
ADC_WAIT_DATA_VALID_STATE: begin
adc_next_state <= ADC_READ_CNV_RESULT;
end
ADC_READ_CNV_RESULT: begin
if((sclk_clk_cnt == 0) || ((adc_sw_reset == 1'b1) && (sclk_clk_cnt == ADC_SCLK_PERIODS - ADC_RESET_SCLK_PERIODS))) begin
adc_next_state <= ADC_END_CNV_STATE;
end
end
ADC_END_CNV_STATE: begin
adc_next_state <= ADC_DATAREADY_STATE;
end
ADC_DATAREADY_STATE: begin
adc_next_state <= ADC_IDLE_STATE;
end
default: begin
adc_next_state <= ADC_IDLE_STATE;
end
endcase
end
endmodule