pluto_hdl_adi/library/axi_dmac/src_axi_mm.v

221 lines
6.3 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
module dmac_src_mm_axi #(
parameter ID_WIDTH = 3,
parameter DMA_DATA_WIDTH = 64,
parameter DMA_ADDR_WIDTH = 32,
parameter BYTES_PER_BEAT_WIDTH = 3,
parameter BEATS_PER_BURST_WIDTH = 4,
parameter AXI_LENGTH_WIDTH = 8)(
input m_axi_aclk,
input m_axi_aresetn,
input req_valid,
output req_ready,
input [DMA_ADDR_WIDTH-1:BYTES_PER_BEAT_WIDTH] req_address,
input [BEATS_PER_BURST_WIDTH-1:0] req_last_burst_length,
input enable,
output reg enabled = 1'b0,
output bl_valid,
input bl_ready,
output [BEATS_PER_BURST_WIDTH-1:0] measured_last_burst_length,
/*
output response_valid,
input response_ready,
output [1:0] response_resp,
*/
input [ID_WIDTH-1:0] request_id,
output [ID_WIDTH-1:0] response_id,
output [ID_WIDTH-1:0] data_id,
output [ID_WIDTH-1:0] address_id,
input address_eot,
output fifo_valid,
output [DMA_DATA_WIDTH-1:0] fifo_data,
output fifo_last,
// Read address
input m_axi_arready,
output m_axi_arvalid,
output [DMA_ADDR_WIDTH-1:0] m_axi_araddr,
output [AXI_LENGTH_WIDTH-1:0] m_axi_arlen,
output [ 2:0] m_axi_arsize,
output [ 1:0] m_axi_arburst,
output [ 2:0] m_axi_arprot,
output [ 3:0] m_axi_arcache,
// Read data and response
input [DMA_DATA_WIDTH-1:0] m_axi_rdata,
output m_axi_rready,
input m_axi_rvalid,
input m_axi_rlast,
input [ 1:0] m_axi_rresp
);
`include "inc_id.vh"
reg [ID_WIDTH-1:0] id = 'h00;
wire address_enabled;
wire req_ready_ag;
wire req_valid_ag;
wire bl_ready_ag;
wire bl_valid_ag;
assign data_id = id;
assign response_id = id;
assign measured_last_burst_length = req_last_burst_length;
splitter #(
.NUM_M(3)
) i_req_splitter (
.clk(m_axi_aclk),
.resetn(m_axi_aresetn),
.s_valid(req_valid),
.s_ready(req_ready),
.m_valid({
bl_valid,
bl_valid_ag,
req_valid_ag
}),
.m_ready({
bl_ready,
bl_ready_ag,
req_ready_ag
})
);
dmac_address_generator #(
.ID_WIDTH(ID_WIDTH),
.BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH),
.BYTES_PER_BEAT_WIDTH(BYTES_PER_BEAT_WIDTH),
.DMA_DATA_WIDTH(DMA_DATA_WIDTH),
.LENGTH_WIDTH(AXI_LENGTH_WIDTH),
.DMA_ADDR_WIDTH(DMA_ADDR_WIDTH)
) i_addr_gen (
.clk(m_axi_aclk),
.resetn(m_axi_aresetn),
.enable(enable),
.enabled(address_enabled),
.request_id(request_id),
.id(address_id),
.req_valid(req_valid_ag),
.req_ready(req_ready_ag),
.req_address(req_address),
.bl_valid(bl_valid_ag),
.bl_ready(bl_ready_ag),
.measured_last_burst_length(req_last_burst_length),
.eot(address_eot),
.addr_ready(m_axi_arready),
.addr_valid(m_axi_arvalid),
.addr(m_axi_araddr),
.len(m_axi_arlen),
.size(m_axi_arsize),
.burst(m_axi_arburst),
.prot(m_axi_arprot),
.cache(m_axi_arcache)
);
assign fifo_valid = m_axi_rvalid;
assign fifo_data = m_axi_rdata;
assign fifo_last = m_axi_rlast;
/*
* There is a requirement that data_id <= address_id (modulo 2**ID_WIDTH). We
* know that we will never receive data before we have requested it so there is
* an implicit dependency between data_id and address_id and no need to
* explicitly track it.
*/
always @(posedge m_axi_aclk) begin
if (m_axi_aresetn == 1'b0) begin
id <= 'h00;
end else if (m_axi_rvalid == 1'b1 && m_axi_rlast == 1'b1) begin
id <= inc_id(id);
end
end
/*
* We won't be receiving data before we've requested it and we won't request
* data unless there is room in the store-and-forward memory.
*/
assign m_axi_rready = 1'b1;
/*
* We need to complete all bursts for which an address has been put onto the
* AXI-MM interface.
*/
always @(posedge m_axi_aclk) begin
if (m_axi_aresetn == 1'b0) begin
enabled <= 1'b0;
end else if (address_enabled == 1'b1) begin
enabled <= 1'b1;
end else if (id == address_id) begin
enabled <= 1'b0;
end
end
/* TODO
`include "resp.vh"
assign response_valid = 1'b0;
assign response_resp = RESP_OKAY;
reg [1:0] rresp;
always @(posedge m_axi_aclk)
begin
if (m_axi_rvalid && m_axi_rready) begin
if (m_axi_rresp != 2'b0)
rresp <= m_axi_rresp;
end
end
*/
endmodule