pluto_hdl_adi/library/xilinx/common/ad_serdes_in.v

325 lines
12 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ps/1ps
module ad_serdes_in #(
parameter FPGA_TECHNOLOGY = 0,
parameter CMOS_LVDS_N = 0,
parameter DDR_OR_SDR_N = 0,
parameter SERDES_FACTOR = 8,
parameter DATA_WIDTH = 16,
parameter DRP_WIDTH = 5,
parameter IODELAY_CTRL = 0,
parameter IODELAY_GROUP = "dev_if_delay_group",
parameter REFCLK_FREQUENCY = 200) (
// reset and clocks
input rst,
input clk,
input div_clk,
input loaden,
input [ 7:0] phase,
input locked,
// data interface
output [(DATA_WIDTH-1):0] data_s0, // last bit received
output [(DATA_WIDTH-1):0] data_s1,
output [(DATA_WIDTH-1):0] data_s2,
output [(DATA_WIDTH-1):0] data_s3,
output [(DATA_WIDTH-1):0] data_s4,
output [(DATA_WIDTH-1):0] data_s5,
output [(DATA_WIDTH-1):0] data_s6,
output [(DATA_WIDTH-1):0] data_s7, // 1st bit received
input [(DATA_WIDTH-1):0] data_in_p,
input [(DATA_WIDTH-1):0] data_in_n,
// delay-data interface
input up_clk,
input [(DATA_WIDTH-1):0] up_dld,
input [((DATA_WIDTH*DRP_WIDTH)-1):0] up_dwdata,
output [((DATA_WIDTH*DRP_WIDTH)-1):0] up_drdata,
// delay-control interface
input delay_clk,
input delay_rst,
output delay_locked);
localparam SEVEN_SERIES = 1;
localparam ULTRASCALE = 2;
localparam ULTRASCALE_PLUS = 3;
localparam DATA_RATE = (DDR_OR_SDR_N) ? "DDR" : "SDR";
localparam SIM_DEVICE = FPGA_TECHNOLOGY == SEVEN_SERIES ? "7SERIES" :
FPGA_TECHNOLOGY == ULTRASCALE ? "ULTRASCALE" :
FPGA_TECHNOLOGY == ULTRASCALE_PLUS ? "ULTRASCALE_PLUS" :
"UNSUPPORTED";
localparam SIM_DEVICE_IDELAYCTRL = FPGA_TECHNOLOGY == SEVEN_SERIES ? "7SERIES" :
FPGA_TECHNOLOGY == ULTRASCALE ? "ULTRASCALE" :
FPGA_TECHNOLOGY == ULTRASCALE_PLUS ? "ULTRASCALE" :
"UNSUPPORTED";
// internal signals
wire [(DATA_WIDTH-1):0] data_in_ibuf_s;
wire [(DATA_WIDTH-1):0] data_in_idelay_s;
wire [(DATA_WIDTH-1):0] data_shift1_s;
wire [(DATA_WIDTH-1):0] data_shift2_s;
// delay controller
generate
if (IODELAY_CTRL == 1) begin
(* IODELAY_GROUP = IODELAY_GROUP *)
IDELAYCTRL #(
.SIM_DEVICE(SIM_DEVICE_IDELAYCTRL)
) i_delay_ctrl (
.RST (delay_rst),
.REFCLK (delay_clk),
.RDY (delay_locked));
end else begin
assign delay_locked = 1'b1;
end
endgenerate
// received data interface: ibuf -> idelay -> iserdes
genvar l_inst;
generate
for (l_inst = 0; l_inst <= (DATA_WIDTH-1); l_inst = l_inst + 1) begin: g_io
if (CMOS_LVDS_N == 0) begin
IBUFDS i_ibuf (
.I (data_in_p[l_inst]),
.IB (data_in_n[l_inst]),
.O (data_in_ibuf_s[l_inst]));
end else begin
IBUF i_ibuf (
.I (data_in_p[l_inst]),
.O (data_in_ibuf_s[l_inst]));
end
end
endgenerate
reg [6:0] serdes_rst_seq;
wire serdes_rst = serdes_rst_seq [6];
always @ (posedge div_clk)
begin
if (rst) serdes_rst_seq [6:0] <= 7'b0001110;
else serdes_rst_seq [6:0] <= {serdes_rst_seq [5:0], 1'b0};
end
generate if (FPGA_TECHNOLOGY == SEVEN_SERIES) begin
for (l_inst = 0; l_inst <= (DATA_WIDTH-1); l_inst = l_inst + 1) begin: g_data
(* IODELAY_GROUP = IODELAY_GROUP *)
IDELAYE2 #(
.CINVCTRL_SEL ("FALSE"),
.DELAY_SRC ("IDATAIN"),
.HIGH_PERFORMANCE_MODE ("FALSE"),
.IDELAY_TYPE ("VAR_LOAD"),
.IDELAY_VALUE (0),
.REFCLK_FREQUENCY (REFCLK_FREQUENCY),
.PIPE_SEL ("FALSE"),
.SIGNAL_PATTERN ("DATA"))
i_idelay (
.CE (1'b0),
.INC (1'b0),
.DATAIN (1'b0),
.LDPIPEEN (1'b0),
.CINVCTRL (1'b0),
.REGRST (1'b0),
.C (up_clk),
.IDATAIN (data_in_ibuf_s[l_inst]),
.DATAOUT (data_in_idelay_s[l_inst]),
.LD (up_dld[l_inst]),
.CNTVALUEIN (up_dwdata[DRP_WIDTH*l_inst +: DRP_WIDTH]),
.CNTVALUEOUT (up_drdata[DRP_WIDTH*l_inst +: DRP_WIDTH]));
ISERDESE2 #(
.DATA_RATE (DATA_RATE),
.DATA_WIDTH (SERDES_FACTOR),
.DYN_CLKDIV_INV_EN ("FALSE"),
.DYN_CLK_INV_EN ("FALSE"),
.INIT_Q1 (1'b0),
.INIT_Q2 (1'b0),
.INIT_Q3 (1'b0),
.INIT_Q4 (1'b0),
.INTERFACE_TYPE ("NETWORKING"),
.IOBDELAY ("IFD"),
.NUM_CE (2),
.OFB_USED ("FALSE"),
.SERDES_MODE ("MASTER"),
.SRVAL_Q1 (1'b0),
.SRVAL_Q2 (1'b0),
.SRVAL_Q3 (1'b0),
.SRVAL_Q4 (1'b0))
i_iserdes (
.O (),
.Q1 (data_s0[l_inst]),
.Q2 (data_s1[l_inst]),
.Q3 (data_s2[l_inst]),
.Q4 (data_s3[l_inst]),
.Q5 (data_s4[l_inst]),
.Q6 (data_s5[l_inst]),
.Q7 (data_s6[l_inst]),
.Q8 (data_s7[l_inst]),
.SHIFTOUT1 (),
.SHIFTOUT2 (),
.BITSLIP (1'b0),
.CE1 (1'b1),
.CE2 (1'b1),
.CLKDIVP (1'b0),
.CLK (clk),
.CLKB (~clk),
.CLKDIV (div_clk),
.OCLK (1'b0),
.DYNCLKDIVSEL (1'b0),
.DYNCLKSEL (1'b0),
.D (1'b0),
.DDLY (data_in_idelay_s[l_inst]),
.OFB (1'b0),
.OCLKB (1'b0),
.RST (serdes_rst),
.SHIFTIN1 (1'b0),
.SHIFTIN2 (1'b0));
end /* g_data */
end
endgenerate
generate if (FPGA_TECHNOLOGY == ULTRASCALE || FPGA_TECHNOLOGY == ULTRASCALE_PLUS) begin
for (l_inst = 0; l_inst <= (DATA_WIDTH-1); l_inst = l_inst + 1) begin: g_data
wire div_dld;
reg [4:0] vtc_cnt = {5{1'b1}};
sync_event sync_load(
.in_clk (up_clk),
.in_event (up_dld[l_inst]),
.out_clk (div_clk),
.out_event (div_dld)
);
(* IODELAY_GROUP = IODELAY_GROUP *)
IDELAYE3 #(
.CASCADE ("NONE"), // Cascade setting (MASTER, NONE, SLAVE_END, SLAVE_MIDDLE)
.DELAY_FORMAT ("TIME"), // Units of the DELAY_VALUE (COUNT, TIME)
.DELAY_SRC ("IDATAIN"), // Delay input (DATAIN, IDATAIN)
.DELAY_TYPE ("VAR_LOAD"), // Set the type of tap delay line (FIXED, VARIABLE, VAR_LOAD)
.DELAY_VALUE (0), // Input delay value setting
.IS_CLK_INVERTED (1'b0), // Optional inversion for CLK
.IS_RST_INVERTED (1'b0), // Optional inversion for RST
.REFCLK_FREQUENCY (500.0), // IDELAYCTRL clock input frequency in MHz (200.0-2667.0)
.SIM_DEVICE (SIM_DEVICE), // Set the device version (ULTRASCALE, ULTRASCALE_PLUS, ULTRASCALE_PLUS_ES1,
// ULTRASCALE_PLUS_ES2)
.UPDATE_MODE ("ASYNC") // Determines when updates to the delay will take effect (ASYNC, MANUAL, SYNC)
)
i_idelay(
.CASC_OUT (), // 1-bit output: Cascade delay output to ODELAY input cascade
.CNTVALUEOUT (up_drdata[DRP_WIDTH*l_inst +: DRP_WIDTH]), // 9-bit output: Counter value output
.DATAOUT (data_in_idelay_s[l_inst]), // 1-bit output: Delayed data output
.CASC_IN (1'b0), // 1-bit input: Cascade delay input from slave ODELAY CASCADE_OUT
.CASC_RETURN (1'b0), // 1-bit input: Cascade delay returning from slave ODELAY DATAOUT
.CE (1'b0), // 1-bit input: Active high enable increment/decrement input
.CLK (div_clk), // 1-bit input: Clock input
.CNTVALUEIN (up_dwdata[DRP_WIDTH*l_inst +: DRP_WIDTH]), // 9-bit input: Counter value input
.DATAIN (1'b0), // 1-bit input: Data input from the logic
.EN_VTC (en_vtc), // 1-bit input: Keep delay constant over VT
.IDATAIN (data_in_ibuf_s[l_inst]), // 1-bit input: Data input from the IOBUF
.INC (1'b0), // 1-bit input: Increment / Decrement tap delay input
.LOAD (ld_cnt), // 1-bit input: Load DELAY_VALUE input
.RST (rst) // 1-bit input: Asynchronous Reset to the DELAY_VALUE
);
always @(posedge div_clk) begin
if (div_dld) begin
vtc_cnt <= 'h0;
end else if (~(&vtc_cnt)) begin
vtc_cnt <= vtc_cnt + 1;
end
end
assign en_vtc = &vtc_cnt;
assign ld_cnt = ~vtc_cnt[4] & (&vtc_cnt[3:0]);
ISERDESE3 #(
.DATA_WIDTH (8), // Parallel data width (4,8)
.FIFO_ENABLE ("FALSE"), // Enables the use of the FIFO
.FIFO_SYNC_MODE ("FALSE"), // Enables the use of internal 2-stage synchronizers on the FIFO
.IS_CLK_B_INVERTED (1'b0), // Optional inversion for CLK_B
.IS_CLK_INVERTED (1'b0), // Optional inversion for CLK
.IS_RST_INVERTED (1'b0), // Optional inversion for RST
.SIM_DEVICE (SIM_DEVICE) // Set the device version (ULTRASCALE, ULTRASCALE_PLUS, ULTRASCALE_PLUS_ES1,
// ULTRASCALE_PLUS_ES2)
)
i_iserdes(
.FIFO_EMPTY (), // 1-bit output: FIFO empty flag
.INTERNAL_DIVCLK (), // 1-bit output: Internally divided down clock used when FIFO is
// disabled (do not connect)
.Q ({data_s0[l_inst],
data_s1[l_inst],
data_s2[l_inst],
data_s3[l_inst],
data_s4[l_inst],
data_s5[l_inst],
data_s6[l_inst],
data_s7[l_inst]}), // 8-bit registered output
.CLK (clk), // 1-bit input: High-speed clock
.CLKDIV (div_clk), // 1-bit input: Divided Clock
.CLK_B (~clk), // 1-bit input: Inversion of High-speed clock CLK
.D (data_in_idelay_s[l_inst]), // 1-bit input: Serial Data Input
.FIFO_RD_CLK (div_clk), // 1-bit input: FIFO read clock
.FIFO_RD_EN (1'b1), // 1-bit input: Enables reading the FIFO when asserted
.RST (serdes_rst) // 1-bit input: Asynchronous Reset
);
end
end
endgenerate
endmodule
// ***************************************************************************
// ***************************************************************************