pluto_hdl_adi/library/jesd204/jesd204_tx/jesd204_tx.v

553 lines
16 KiB
Verilog
Executable File

//
// The ADI JESD204 Core is released under the following license, which is
// different than all other HDL cores in this repository.
//
// Please read this, and understand the freedoms and responsibilities you have
// by using this source code/core.
//
// The JESD204 HDL, is copyright © 2016-2017 Analog Devices Inc.
//
// This core is free software, you can use run, copy, study, change, ask
// questions about and improve this core. Distribution of source, or resulting
// binaries (including those inside an FPGA or ASIC) require you to release the
// source of the entire project (excluding the system libraries provide by the
// tools/compiler/FPGA vendor). These are the terms of the GNU General Public
// License version 2 as published by the Free Software Foundation.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License version 2
// along with this source code, and binary. If not, see
// <http://www.gnu.org/licenses/>.
//
// Commercial licenses (with commercial support) of this JESD204 core are also
// available under terms different than the General Public License. (e.g. they
// do not require you to accompany any image (FPGA or ASIC) using the JESD204
// core with any corresponding source code.) For these alternate terms you must
// purchase a license from Analog Devices Technology Licensing Office. Users
// interested in such a license should contact jesd204-licensing@analog.com for
// more information. This commercial license is sub-licensable (if you purchase
// chips from Analog Devices, incorporate them into your PCB level product, and
// purchase a JESD204 license, end users of your product will also have a
// license to use this core in a commercial setting without releasing their
// source code).
//
// In addition, we kindly ask you to acknowledge ADI in any program, application
// or publication in which you use this JESD204 HDL core. (You are not required
// to do so; it is up to your common sense to decide whether you want to comply
// with this request or not.) For general publications, we suggest referencing :
// “The design and implementation of the JESD204 HDL Core used in this project
// is copyright © 2016-2017, Analog Devices, Inc.”
//
`timescale 1ns/100ps
module jesd204_tx #(
parameter NUM_LANES = 1,
parameter NUM_LINKS = 1,
parameter NUM_OUTPUT_PIPELINE = 0,
parameter LINK_MODE = 1, // 2 - 64B/66B; 1 - 8B/10B
/* Only 4 is supported at the moment for 8b/10b and 8 for 64b */
parameter DATA_PATH_WIDTH = LINK_MODE[1] ? 8 : 4,
parameter TPL_DATA_PATH_WIDTH = LINK_MODE[1] ? 8 : 4,
parameter ENABLE_CHAR_REPLACE = 1'b0,
parameter ASYNC_CLK = 1
) (
input clk,
input reset,
input device_clk,
input device_reset,
output [DATA_PATH_WIDTH*8*NUM_LANES-1:0] phy_data,
output [DATA_PATH_WIDTH*NUM_LANES-1:0] phy_charisk,
output [2*NUM_LANES-1:0] phy_header,
input sysref,
output lmfc_edge,
output lmfc_clk,
input [NUM_LINKS-1:0] sync,
input [TPL_DATA_PATH_WIDTH*8*NUM_LANES-1:0] tx_data,
output tx_ready,
output [TPL_DATA_PATH_WIDTH-1:0] tx_eof,
output [TPL_DATA_PATH_WIDTH-1:0] tx_sof,
output [TPL_DATA_PATH_WIDTH-1:0] tx_somf,
output [TPL_DATA_PATH_WIDTH-1:0] tx_eomf,
input tx_valid,
input [NUM_LANES-1:0] cfg_lanes_disable,
input [NUM_LINKS-1:0] cfg_links_disable,
input [9:0] cfg_octets_per_multiframe,
input [7:0] cfg_octets_per_frame,
input cfg_continuous_cgs,
input cfg_continuous_ilas,
input cfg_skip_ilas,
input [7:0] cfg_mframes_per_ilas,
input cfg_disable_char_replacement,
input cfg_disable_scrambler,
input [9:0] device_cfg_octets_per_multiframe,
input [7:0] device_cfg_octets_per_frame,
input [7:0] device_cfg_beats_per_multiframe,
input [7:0] device_cfg_lmfc_offset,
input device_cfg_sysref_oneshot,
input device_cfg_sysref_disable,
output ilas_config_rd,
output [1:0] ilas_config_addr,
input [NUM_LANES*DATA_PATH_WIDTH*8-1:0] ilas_config_data,
input ctrl_manual_sync_request,
output device_event_sysref_edge,
output device_event_sysref_alignment_error,
output [NUM_LINKS-1:0] status_sync,
output [1:0] status_state,
output [31:0] status_synth_params0,
output [31:0] status_synth_params1,
output [31:0] status_synth_params2
);
localparam MAX_OCTETS_PER_FRAME = 32;
localparam MAX_OCTETS_PER_MULTIFRAME =
(MAX_OCTETS_PER_FRAME * 32) > 1024 ? 1024 : (MAX_OCTETS_PER_FRAME * 32);
localparam MAX_BEATS_PER_MULTIFRAME = MAX_OCTETS_PER_MULTIFRAME / DATA_PATH_WIDTH;
localparam DPW_LOG2 = DATA_PATH_WIDTH == 8 ? 3 : DATA_PATH_WIDTH == 4 ? 2 : 1;
localparam LMFC_COUNTER_WIDTH = MAX_BEATS_PER_MULTIFRAME > 256 ? 9 :
MAX_BEATS_PER_MULTIFRAME > 128 ? 8 :
MAX_BEATS_PER_MULTIFRAME > 64 ? 7 :
MAX_BEATS_PER_MULTIFRAME > 32 ? 6 :
MAX_BEATS_PER_MULTIFRAME > 16 ? 5 :
MAX_BEATS_PER_MULTIFRAME > 8 ? 4 :
MAX_BEATS_PER_MULTIFRAME > 4 ? 3 :
MAX_BEATS_PER_MULTIFRAME > 2 ? 2 : 1;
localparam DW = DATA_PATH_WIDTH * 8 * NUM_LANES;
localparam CW = DATA_PATH_WIDTH * NUM_LANES;
localparam HW = 2 * NUM_LANES;
wire [DW-1:0] phy_data_r;
wire [CW-1:0] phy_charisk_r;
wire [HW-1:0] phy_header_r;
wire eof_gen_reset;
wire tx_ready_64b_next;
reg tx_ready_64b;
wire frame_mark_reset;
wire [DATA_PATH_WIDTH-1:0] tx_sof_fm;
wire [DATA_PATH_WIDTH-1:0] tx_eof_fm;
wire [DATA_PATH_WIDTH-1:0] tx_somf_fm;
wire [DATA_PATH_WIDTH-1:0] tx_eomf_fm;
reg [DATA_PATH_WIDTH-1:0] tx_sof_fm_d1;
reg [DATA_PATH_WIDTH-1:0] tx_eof_fm_d1;
reg [DATA_PATH_WIDTH-1:0] tx_somf_fm_d1;
reg [DATA_PATH_WIDTH-1:0] tx_eomf_fm_d1;
reg [DATA_PATH_WIDTH-1:0] tx_sof_fm_d2;
reg [DATA_PATH_WIDTH-1:0] tx_eof_fm_d2;
reg [DATA_PATH_WIDTH-1:0] tx_somf_fm_d2;
reg [DATA_PATH_WIDTH-1:0] tx_eomf_fm_d2;
wire lmfc_edge_synced;
wire lmc_edge;
wire lmc_quarter_edge;
wire eoemb;
wire [DATA_PATH_WIDTH*8*NUM_LANES-1:0] gearbox_data;
wire tx_ready_nx;
wire link_lmfc_edge;
wire link_lmfc_clk;
wire device_lmfc_edge;
wire device_lmfc_clk;
wire device_lmc_edge;
wire device_lmc_quarter_edge;
wire device_eoemb;
wire tx_next_mf_ready;
wire link_tx_ready;
wire [7:0] cfg_beats_per_multiframe = cfg_octets_per_multiframe >> DPW_LOG2;
wire [7:0] device_cfg_beats_per_multiframe_s;
// If input and output widths are symmetric keep the calculation for backwards
// compatibility of the software.
assign device_cfg_beats_per_multiframe_s = (TPL_DATA_PATH_WIDTH == DATA_PATH_WIDTH) ?
device_cfg_octets_per_multiframe >> DPW_LOG2 :
device_cfg_beats_per_multiframe;
jesd204_lmfc #(
.LINK_MODE(LINK_MODE),
.DATA_PATH_WIDTH(TPL_DATA_PATH_WIDTH)
) i_lmfc (
.clk(device_clk),
.reset(device_reset),
.cfg_octets_per_multiframe(device_cfg_octets_per_multiframe),
.cfg_lmfc_offset(device_cfg_lmfc_offset),
.cfg_beats_per_multiframe(device_cfg_beats_per_multiframe_s),
.cfg_sysref_oneshot(device_cfg_sysref_oneshot),
.cfg_sysref_disable(device_cfg_sysref_disable),
.sysref(sysref),
.sysref_edge(device_event_sysref_edge),
.sysref_alignment_error(device_event_sysref_alignment_error),
.lmfc_edge(device_lmfc_edge),
.lmfc_clk(device_lmfc_clk),
.lmfc_counter(),
.lmc_edge(device_lmc_edge),
.lmc_quarter_edge(device_lmc_quarter_edge),
.eoemb(device_eoemb)
);
generate
if (ASYNC_CLK) begin : dual_lmfc_mode
reg link_lmfc_reset = 1'b1;
reg device_lmfc_edge_d1 = 1'b0;
reg device_tx_ready = 1'b0;
jesd204_lmfc #(
.LINK_MODE(LINK_MODE),
.DATA_PATH_WIDTH(DATA_PATH_WIDTH)
) i_link_lmfc (
.clk(clk),
.reset(link_lmfc_reset),
.cfg_octets_per_multiframe(cfg_octets_per_multiframe),
.cfg_lmfc_offset('h0),
.cfg_beats_per_multiframe(cfg_beats_per_multiframe),
.cfg_sysref_oneshot(1'b0),
.cfg_sysref_disable(1'b1),
.sysref(sysref),
.sysref_edge(),
.sysref_alignment_error(),
.lmfc_edge(link_lmfc_edge),
.lmfc_clk(link_lmfc_clk),
.lmfc_counter(),
.lmc_edge(lmc_edge),
.lmc_quarter_edge(lmc_quarter_edge),
.eoemb(eoemb)
);
sync_bits #(
.NUM_OF_BITS (1),
.ASYNC_CLK(ASYNC_CLK)
) i_link_reset_done_cdc (
.in_bits(~reset),
.out_clk(device_clk),
.out_resetn(~device_reset),
.out_bits(link_reset_n)
);
sync_event #(
.NUM_OF_EVENTS (1)
) i_sync_lmfc (
.in_clk(device_clk),
.in_event(device_lmfc_edge & link_reset_n),
.out_clk(clk),
.out_event(lmfc_edge_synced)
);
always @(posedge clk) begin
if (reset) begin
link_lmfc_reset <= 1'b1;
end else if (lmfc_edge_synced) begin
link_lmfc_reset <= 1'b0;
end
end
jesd204_tx_gearbox #(
.IN_DATA_PATH_WIDTH(TPL_DATA_PATH_WIDTH),
.OUT_DATA_PATH_WIDTH(DATA_PATH_WIDTH),
.NUM_LANES(NUM_LANES),
.DEPTH(8)
) i_tx_gearbox(
.link_clk(clk),
.reset(reset),
.device_clk(device_clk),
.device_reset(device_reset),
.device_data(tx_data),
.device_lmfc_edge(device_lmfc_edge_d1),
.link_data(gearbox_data),
.output_ready(tx_ready_nx)
);
always @(posedge device_clk) begin
device_lmfc_edge_d1 <= device_lmfc_edge;
end
sync_bits #(
.NUM_OF_BITS (1),
.ASYNC_CLK(ASYNC_CLK)
) i_next_mf_ready_cdc (
.in_bits(tx_next_mf_ready),
.out_clk(device_clk),
.out_resetn(1'b1),
.out_bits(device_tx_next_mf_ready)
);
always @(posedge device_clk) begin
if (device_reset) begin
device_tx_ready <= 1'b0;
end else if (device_lmfc_edge & device_tx_next_mf_ready) begin
device_tx_ready <= 1'b1;
end
end
jesd204_frame_mark #(
.DATA_PATH_WIDTH(TPL_DATA_PATH_WIDTH)
) i_device_frame_mark (
.clk(device_clk),
.reset(~device_tx_ready),
.cfg_octets_per_multiframe(device_cfg_octets_per_multiframe),
.cfg_beats_per_multiframe(device_cfg_beats_per_multiframe_s),
.cfg_octets_per_frame(device_cfg_octets_per_frame),
.sof(tx_sof),
.eof(tx_eof),
.somf(tx_somf),
.eomf(tx_eomf)
);
assign tx_ready = device_tx_ready;
end else begin
assign link_lmfc_edge = device_lmfc_edge;
assign link_lmfc_clk = device_lmfc_clk;
assign lmc_edge = device_lmc_edge;
assign lmc_quarter_edge = device_lmc_quarter_edge;
assign eoemb = device_eoemb;
assign gearbox_data = tx_data;
assign tx_sof = (LINK_MODE == 1) ? tx_sof_fm_d2 : tx_sof_fm;
assign tx_eof = (LINK_MODE == 1) ? tx_eof_fm_d2 : tx_eof_fm;
assign tx_somf = (LINK_MODE == 1) ? tx_somf_fm_d2 : tx_somf_fm;
assign tx_eomf = (LINK_MODE == 1) ? tx_eomf_fm_d2 : tx_eomf_fm;
assign tx_ready = link_tx_ready;
end
endgenerate
assign lmfc_edge = device_lmfc_edge;
assign lmfc_clk = device_lmfc_clk;
assign frame_mark_reset = (LINK_MODE == 1) ? eof_gen_reset : ~tx_ready_64b_next;
jesd204_frame_mark #(
.DATA_PATH_WIDTH (DATA_PATH_WIDTH)
) i_frame_mark (
.clk (clk),
.reset (frame_mark_reset),
.cfg_octets_per_multiframe (cfg_octets_per_multiframe),
.cfg_beats_per_multiframe (cfg_beats_per_multiframe),
.cfg_octets_per_frame (cfg_octets_per_frame),
.sof (tx_sof_fm),
.eof (tx_eof_fm),
.somf (tx_somf_fm),
.eomf (tx_eomf_fm)
);
always @(posedge clk) begin
tx_sof_fm_d1 <= tx_sof_fm;
tx_eof_fm_d1 <= tx_eof_fm;
tx_somf_fm_d1 <= tx_somf_fm;
tx_eomf_fm_d1 <= tx_eomf_fm;
tx_sof_fm_d2 <= tx_sof_fm_d1;
tx_eof_fm_d2 <= tx_eof_fm_d1;
tx_somf_fm_d2 <= tx_somf_fm_d1;
tx_eomf_fm_d2 <= tx_eomf_fm_d1;
end
generate
genvar i;
if (LINK_MODE[0] == 1) begin : mode_8b10b
reg [DATA_PATH_WIDTH-1:0] tx_eof_fm_d3;
reg [DATA_PATH_WIDTH-1:0] tx_eomf_fm_d3;
wire [NUM_LANES-1:0] lane_cgs_enable;
wire [DW-1:0] ilas_data;
wire [DATA_PATH_WIDTH*NUM_LANES-1:0] ilas_charisk;
wire cfg_generate_eomf = 1'b1;
always @(posedge clk) begin
tx_eof_fm_d3 <= tx_eof_fm_d2;
tx_eomf_fm_d3 <= tx_eomf_fm_d2;
end
jesd204_tx_ctrl #(
.NUM_LANES(NUM_LANES),
.NUM_LINKS(NUM_LINKS),
.DATA_PATH_WIDTH(DATA_PATH_WIDTH)
) i_tx_ctrl (
.clk(clk),
.reset(reset),
.sync(sync),
.lmfc_edge(link_lmfc_edge),
.somf(tx_somf_fm_d2),
.somf_early2(tx_somf_fm),
.eomf(tx_eomf_fm_d2),
.lane_cgs_enable(lane_cgs_enable),
.eof_reset(eof_gen_reset),
.tx_ready(link_tx_ready),
.tx_ready_nx(tx_ready_nx),
.tx_next_mf_ready(tx_next_mf_ready),
.ilas_data(ilas_data),
.ilas_charisk(ilas_charisk),
.ilas_config_addr(ilas_config_addr),
.ilas_config_rd(ilas_config_rd),
.ilas_config_data(ilas_config_data),
.cfg_lanes_disable(cfg_lanes_disable),
.cfg_links_disable(cfg_links_disable),
.cfg_continuous_cgs(cfg_continuous_cgs),
.cfg_continuous_ilas(cfg_continuous_ilas),
.cfg_skip_ilas(cfg_skip_ilas),
.cfg_mframes_per_ilas(cfg_mframes_per_ilas),
.cfg_octets_per_multiframe(cfg_octets_per_multiframe),
.ctrl_manual_sync_request(ctrl_manual_sync_request),
.status_sync(status_sync),
.status_state(status_state)
);
for (i = 0; i < NUM_LANES; i = i + 1) begin: gen_lane
localparam D_START = i * DATA_PATH_WIDTH*8;
localparam D_STOP = D_START + DATA_PATH_WIDTH*8-1;
localparam C_START = i * DATA_PATH_WIDTH;
localparam C_STOP = C_START + DATA_PATH_WIDTH-1;
jesd204_tx_lane #(
.DATA_PATH_WIDTH(DATA_PATH_WIDTH),
.ENABLE_CHAR_REPLACE(ENABLE_CHAR_REPLACE)
) i_lane (
.clk(clk),
.eof(tx_eof_fm_d3),
.eomf(tx_eomf_fm_d3),
.cgs_enable(lane_cgs_enable[i]),
.ilas_data(ilas_data[D_STOP:D_START]),
.ilas_charisk(ilas_charisk[C_STOP:C_START]),
.tx_data(gearbox_data[D_STOP:D_START]),
.tx_ready(link_tx_ready),
.phy_data(phy_data_r[D_STOP:D_START]),
.phy_charisk(phy_charisk_r[C_STOP:C_START]),
.cfg_octets_per_frame(cfg_octets_per_frame),
.cfg_disable_char_replacement(cfg_disable_char_replacement),
.cfg_disable_scrambler(cfg_disable_scrambler)
);
end
assign phy_header_r = 'h0;
end
if (LINK_MODE[1] == 1) begin : mode_64b66b
for (i = 0; i < NUM_LANES; i = i + 1) begin: gen_lane
localparam D_START = i * DATA_PATH_WIDTH*8;
localparam D_STOP = D_START + DATA_PATH_WIDTH*8-1;
localparam H_START = i * 2;
localparam H_STOP = H_START + 2 -1;
jesd204_tx_lane_64b i_lane(
.clk(clk),
.reset(reset),
.tx_data(gearbox_data[D_STOP:D_START]),
.tx_ready(tx_ready_64b),
.phy_data(phy_data_r[D_STOP:D_START]),
.phy_header(phy_header_r[H_STOP:H_START]),
.lmc_edge(lmc_edge),
.lmc_quarter_edge(lmc_quarter_edge),
.eoemb(eoemb),
.cfg_disable_scrambler(cfg_disable_scrambler),
.cfg_header_mode(2'b0),
.cfg_lane_disable(cfg_lanes_disable[i])
);
end
assign tx_ready_64b_next = reset ? 1'b0 : (link_lmfc_edge || tx_ready_64b);
always @(posedge clk) begin
if (reset) begin
tx_ready_64b <= 1'b0;
end else begin
tx_ready_64b <= tx_ready_64b_next;
end
end
assign tx_ready_nx = tx_ready_64b_next;
assign tx_next_mf_ready = 1'b1;
assign link_tx_ready = tx_ready_64b;
// Link considered in DATA phase when SYSREF received and LEMC clock started
// running
assign status_state = {2{tx_ready_64b}};
assign phy_charisk_r = 'h0;
assign ilas_config_rd = 'h0;
assign ilas_config_addr = 'h0;
assign status_sync = 'h0;
end
endgenerate
pipeline_stage #(
.WIDTH(CW + DW + HW),
.REGISTERED(NUM_OUTPUT_PIPELINE)
) i_output_pipeline_stage (
.clk(clk),
.in({
phy_data_r,
phy_charisk_r,
phy_header_r
}),
.out({
phy_data,
phy_charisk,
phy_header
})
);
// Core static parameters
assign status_synth_params0 = {NUM_LANES};
assign status_synth_params1 = {
/*31:16 */ 16'b0,
/*15: 8 */ 3'b0,TPL_DATA_PATH_WIDTH[4:0],
/* 7: 0 */ 4'b0,DPW_LOG2[3:0]};
assign status_synth_params2 = {
/*31:16 */ 16'b0,
/*15:13 */ 3'b0,
/* 12 */ ASYNC_CLK[0],
/*11:10 */ 2'b0,
/* 9: 8 */ LINK_MODE[1:0],
/* 7: 0 */ NUM_LINKS[7:0]};
endmodule