pluto_hdl_adi/library/axi_dmac/request_generator.v

259 lines
7.8 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright (C) 2014-2023 Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module request_generator #(
parameter ID_WIDTH = 3,
parameter BURSTS_PER_TRANSFER_WIDTH = 17
) (
input clk,
input resetn,
output [ID_WIDTH-1:0] request_id,
input [ID_WIDTH-1:0] response_id,
input rewind_req_valid,
output rewind_req_ready,
input [ID_WIDTH+3-1:0] rewind_req_data,
output rewind_state,
output abort_req,
output reg completion_req_valid = 1'b0,
input completion_req_ready,
output completion_req_last,
output [1:0] completion_transfer_id,
input req_valid,
output reg req_ready,
input [BURSTS_PER_TRANSFER_WIDTH-1:0] req_burst_count,
input req_xlast,
input enable,
output eot
);
`include "inc_id.vh"
localparam STATE_IDLE = 3'h0;
localparam STATE_GEN_ID = 3'h1;
localparam STATE_REWIND_ID = 3'h2;
localparam STATE_CONSUME = 3'h3;
localparam STATE_WAIT_LAST = 3'h4;
reg [2:0] state = STATE_IDLE;
reg [2:0] nx_state;
reg [1:0] rew_transfer_id = 1'b0;
reg rew_req_xlast;
reg [ID_WIDTH-1:0] rew_id = 'h0;
reg cur_transfer_id = 1'b0;
reg cur_req_xlast;
wire transfer_id_match;
reg nx_completion_req_valid;
/*
* Here we only need to count the number of bursts, which means we can ignore
* the lower bits of the byte count. The last last burst may not contain the
* maximum number of bytes, but the address_generator and data_mover will take
* care that only the requested ammount of bytes is transfered.
*/
reg [BURSTS_PER_TRANSFER_WIDTH-1:0] burst_count = 'h00;
reg [BURSTS_PER_TRANSFER_WIDTH-1:0] cur_burst_length = 'h00;
reg [ID_WIDTH-1:0] id;
wire [ID_WIDTH-1:0] id_next = inc_id(id);
wire incr_en;
wire incr_id;
assign eot = burst_count == 'h00;
assign request_id = id;
assign incr_en = (response_id != id_next) && (enable == 1'b1);
assign incr_id = (state == STATE_GEN_ID) && (incr_en == 1'b1);
always @(posedge clk) begin
if (state == STATE_IDLE) begin
burst_count <= req_burst_count;
end else if (state == STATE_REWIND_ID) begin
burst_count <= cur_burst_length;
end else if (incr_id == 1'b1) begin
burst_count <= burst_count - 1'b1;
end
end
always @(posedge clk) begin
if (req_ready == 1'b1 & req_valid == 1'b1) begin
cur_req_xlast <= req_xlast;
cur_burst_length <= req_burst_count;
end
end
always @(posedge clk) begin
if (resetn == 1'b0) begin
id <= 'h0;
end else if (state == STATE_REWIND_ID) begin
id <= rew_id;
end else if (incr_id == 1'b1) begin
id <= id_next;
end
end
always @(posedge clk) begin
if (resetn == 1'b0) begin
req_ready <= 1'b0;
end else begin
req_ready <= (nx_state == STATE_IDLE || nx_state == STATE_CONSUME);
end
end
assign transfer_id_match = cur_transfer_id == rew_transfer_id[0];
always @(posedge clk) begin
if (resetn == 1'b0) begin
cur_transfer_id <= 1'b0;
end else if (req_valid == 1'b1 && req_ready == 1'b1) begin
cur_transfer_id <= ~cur_transfer_id;
end
end
/*
* Once rewind request is received we need to stop incrementing the burst ID.
*
* If the current segment matches the segment that was interrupted and
* if it was a last segment we ignore consecutive segments until the last
* segment is received, in other case we can jump to the next segment.
*
* If the current segment is newer than the one got interrupted and the
* interrupted one was a last segment we need to replay the current
* segment with the adjusted burst ID. If the interrupted segment was not last
* we need to consume/ignore all segments until a last segment is received.
*
* Completion requests are generated for every segment that is
* consumed/ignored. These are handled by the response_manager once the
* interrupted segment got transferred to the destination.
*/
always @(*) begin
nx_state = state;
nx_completion_req_valid = 0;
case (state)
STATE_IDLE: begin
if (rewind_req_valid == 1'b1 && rewind_req_ready == 1'b1) begin
nx_state = STATE_REWIND_ID;
end else if (req_valid == 1'b1) begin
nx_state = STATE_GEN_ID;
end
end
STATE_GEN_ID: begin
if (rewind_req_valid == 1'b1 && rewind_req_ready == 1'b1) begin
nx_state = STATE_REWIND_ID;
end else if (eot == 1'b1 && incr_en == 1'b1) begin
nx_state = STATE_IDLE;
end
end
STATE_REWIND_ID: begin
if (transfer_id_match) begin
if (rew_req_xlast) begin
nx_state = STATE_IDLE;
end else begin
nx_state = STATE_CONSUME;
end
end else begin
if (rew_req_xlast) begin
nx_state = STATE_GEN_ID;
end else if (cur_req_xlast) begin
nx_state = STATE_IDLE;
nx_completion_req_valid = 1;
end else begin
nx_state = STATE_CONSUME;
nx_completion_req_valid = 1;
end
end
end
STATE_CONSUME: begin
if (req_valid) begin
nx_completion_req_valid = 1;
nx_state = STATE_WAIT_LAST;
end
end
STATE_WAIT_LAST:begin
if (cur_req_xlast) begin
nx_state = STATE_IDLE;
end else begin
nx_state = STATE_CONSUME;
end
end
default: begin
nx_state = STATE_IDLE;
end
endcase
end
always @(posedge clk) begin
if (resetn == 1'b0) begin
state <= STATE_IDLE;
end else begin
state <= nx_state;
end
end
always @(posedge clk) begin
if (rewind_req_valid == 1'b1 && rewind_req_ready == 1'b1) begin
{rew_transfer_id, rew_req_xlast, rew_id} <= rewind_req_data;
end
end
always @(posedge clk) begin
if (resetn == 1'b0) begin
completion_req_valid <= 1'b0;
end else begin
completion_req_valid <= nx_completion_req_valid;
end
end
assign completion_req_last = cur_req_xlast;
assign completion_transfer_id = rew_transfer_id;
assign rewind_state = (state == STATE_REWIND_ID);
assign rewind_req_ready = completion_req_ready;
assign abort_req = (state == STATE_REWIND_ID) && !rew_req_xlast && !cur_req_xlast;
endmodule