pluto_hdl_adi/library/xilinx/axi_adcfifo/axi_adcfifo_dma.v

215 lines
7.1 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// Each core or library found in this collection may have its own licensing terms.
// The user should keep this in in mind while exploring these cores.
//
// Redistribution and use in source and binary forms,
// with or without modification of this file, are permitted under the terms of either
// (at the option of the user):
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory, or at:
// https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
//
// OR
//
// 2. An ADI specific BSD license as noted in the top level directory, or on-line at:
// https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module axi_adcfifo_dma #(
parameter AXI_DATA_WIDTH = 512,
parameter DMA_DATA_WIDTH = 64,
parameter DMA_READY_ENABLE = 1) (
input axi_clk,
input axi_drst,
input axi_dvalid,
input [AXI_DATA_WIDTH-1:0] axi_ddata,
output reg axi_dready,
input [ 3:0] axi_xfer_status,
input dma_clk,
output dma_wr,
output [DMA_DATA_WIDTH-1:0] dma_wdata,
input dma_wready,
input dma_xfer_req,
output [ 3:0] dma_xfer_status);
localparam DMA_MEM_RATIO = AXI_DATA_WIDTH/DMA_DATA_WIDTH;
localparam DMA_ADDRESS_WIDTH = 8;
localparam AXI_ADDRESS_WIDTH = (DMA_MEM_RATIO == 2) ? (DMA_ADDRESS_WIDTH - 1) :
((DMA_MEM_RATIO == 4) ? (DMA_ADDRESS_WIDTH - 2) : (DMA_ADDRESS_WIDTH - 3));
// internal registers
reg [AXI_ADDRESS_WIDTH-1:0] axi_waddr = 'd0;
reg [ 2:0] axi_waddr_rel_count = 'd0;
reg axi_waddr_rel_t = 'd0;
reg [AXI_ADDRESS_WIDTH-1:0] axi_waddr_rel = 'd0;
reg [ 2:0] axi_raddr_rel_t_m = 'd0;
reg [DMA_ADDRESS_WIDTH-1:0] axi_raddr_rel = 'd0;
reg [DMA_ADDRESS_WIDTH-1:0] axi_addr_diff = 'd0;
reg dma_rst = 'd0;
reg [ 2:0] dma_waddr_rel_t_m = 'd0;
reg [AXI_ADDRESS_WIDTH-1:0] dma_waddr_rel = 'd0;
reg dma_rd = 'd0;
reg dma_rd_d = 'd0;
reg [DMA_DATA_WIDTH-1:0] dma_rdata_d = 'd0;
reg [DMA_ADDRESS_WIDTH-1:0] dma_raddr = 'd0;
reg [ 2:0] dma_raddr_rel_count = 'd0;
reg dma_raddr_rel_t = 'd0;
reg [DMA_ADDRESS_WIDTH-1:0] dma_raddr_rel = 'd0;
// internal signals
wire [DMA_ADDRESS_WIDTH:0] axi_addr_diff_s;
wire axi_raddr_rel_t_s;
wire [DMA_ADDRESS_WIDTH-1:0] axi_waddr_s;
wire dma_waddr_rel_t_s;
wire [DMA_ADDRESS_WIDTH-1:0] dma_waddr_rel_s;
wire dma_wready_s;
wire dma_rd_s;
wire [DMA_DATA_WIDTH-1:0] dma_rdata_s;
// write interface
always @(posedge axi_clk) begin
if (axi_drst == 1'b1) begin
axi_waddr <= 'd0;
axi_waddr_rel_count <= 'd0;
axi_waddr_rel_t <= 'd0;
axi_waddr_rel <= 'd0;
end else begin
if (axi_dvalid == 1'b1) begin
axi_waddr <= axi_waddr + 1'b1;
end
axi_waddr_rel_count <= axi_waddr_rel_count + 1'b1;
if (axi_waddr_rel_count == 3'd7) begin
axi_waddr_rel_t <= ~axi_waddr_rel_t;
axi_waddr_rel <= axi_waddr;
end
end
end
assign axi_addr_diff_s = {1'b1, axi_waddr_s} - axi_raddr_rel;
assign axi_raddr_rel_t_s = axi_raddr_rel_t_m[2] ^ axi_raddr_rel_t_m[1];
assign axi_waddr_s = (DMA_MEM_RATIO == 2) ? {axi_waddr, 1'd0} :
((DMA_MEM_RATIO == 4) ? {axi_waddr, 2'd0} : {axi_waddr, 3'd0});
always @(posedge axi_clk) begin
if (axi_drst == 1'b1) begin
axi_raddr_rel_t_m <= 'd0;
axi_raddr_rel <= 'd0;
axi_addr_diff <= 'd0;
axi_dready <= 'd0;
end else begin
axi_raddr_rel_t_m <= {axi_raddr_rel_t_m[1:0], dma_raddr_rel_t};
if (axi_raddr_rel_t_s == 1'b1) begin
axi_raddr_rel <= dma_raddr_rel;
end
axi_addr_diff <= axi_addr_diff_s[DMA_ADDRESS_WIDTH-1:0];
if (axi_addr_diff >= 180) begin
axi_dready <= 1'b0;
end else if (axi_addr_diff <= 8) begin
axi_dready <= 1'b1;
end
end
end
// read interface
assign dma_waddr_rel_t_s = dma_waddr_rel_t_m[2] ^ dma_waddr_rel_t_m[1];
assign dma_waddr_rel_s = (DMA_MEM_RATIO == 2) ? {dma_waddr_rel, 1'd0} :
((DMA_MEM_RATIO == 4) ? {dma_waddr_rel, 2'd0} : {dma_waddr_rel, 3'd0});
always @(posedge dma_clk) begin
if (dma_xfer_req == 1'b0) begin
dma_rst <= 1'b1;
dma_waddr_rel_t_m <= 'd0;
dma_waddr_rel <= 'd0;
end else begin
dma_rst <= 1'b0;
dma_waddr_rel_t_m <= {dma_waddr_rel_t_m[1:0], axi_waddr_rel_t};
if (dma_waddr_rel_t_s == 1'b1) begin
dma_waddr_rel <= axi_waddr_rel;
end
end
end
assign dma_wready_s = (DMA_READY_ENABLE == 0) ? 1'b1 : dma_wready;
assign dma_rd_s = (dma_raddr == dma_waddr_rel_s) ? 1'b0 : dma_wready_s;
always @(posedge dma_clk) begin
if (dma_xfer_req == 1'b0) begin
dma_rd <= 'd0;
dma_rd_d <= 'd0;
dma_rdata_d <= 'd0;
dma_raddr <= 'd0;
dma_raddr_rel_count <= 'd0;
dma_raddr_rel_t <= 'd0;
dma_raddr_rel <= 'd0;
end else begin
dma_rd <= dma_rd_s;
dma_rd_d <= dma_rd;
dma_rdata_d <= dma_rdata_s;
if (dma_rd_s == 1'b1) begin
dma_raddr <= dma_raddr + 1'b1;
end
dma_raddr_rel_count <= dma_raddr_rel_count + 1'b1;
if (dma_raddr_rel_count == 3'd7) begin
dma_raddr_rel_t <= ~dma_raddr_rel_t;
dma_raddr_rel <= dma_raddr;
end
end
end
// instantiations
ad_mem_asym #(
.A_ADDRESS_WIDTH (AXI_ADDRESS_WIDTH),
.A_DATA_WIDTH (AXI_DATA_WIDTH),
.B_ADDRESS_WIDTH (DMA_ADDRESS_WIDTH),
.B_DATA_WIDTH (DMA_DATA_WIDTH))
i_mem_asym (
.clka (axi_clk),
.wea (axi_dvalid),
.addra (axi_waddr),
.dina (axi_ddata),
.clkb (dma_clk),
.addrb (dma_raddr),
.doutb (dma_rdata_s));
ad_axis_inf_rx #(.DATA_WIDTH(DMA_DATA_WIDTH)) i_axis_inf (
.clk (dma_clk),
.rst (dma_rst),
.valid (dma_rd_d),
.last (1'd0),
.data (dma_rdata_d),
.inf_valid (dma_wr),
.inf_last (),
.inf_data (dma_wdata),
.inf_ready (dma_wready));
up_xfer_status #(.DATA_WIDTH(4)) i_xfer_status (
.up_rstn (~dma_rst),
.up_clk (dma_clk),
.up_data_status (dma_xfer_status),
.d_rst (axi_drst),
.d_clk (axi_clk),
.d_data_status (axi_xfer_status));
endmodule
// ***************************************************************************
// ***************************************************************************