pluto_hdl_adi/library/util_adcfifo/util_adcfifo.v

227 lines
7.4 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// Each core or library found in this collection may have its own licensing terms.
// The user should keep this in in mind while exploring these cores.
//
// Redistribution and use in source and binary forms,
// with or without modification of this file, are permitted under the terms of either
// (at the option of the user):
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory, or at:
// https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
//
// OR
//
// 2. An ADI specific BSD license as noted in the top level directory, or on-line at:
// https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module util_adcfifo #(
parameter DEVICE_TYPE = 0,
parameter ADC_DATA_WIDTH = 256,
parameter DMA_DATA_WIDTH = 64,
parameter DMA_READY_ENABLE = 1,
parameter DMA_ADDRESS_WIDTH = 10) (
// fifo interface
input adc_rst,
input adc_clk,
input adc_wr,
input [ADC_DATA_WIDTH-1:0] adc_wdata,
output adc_wovf,
// dma interface
input dma_clk,
output dma_wr,
output [DMA_DATA_WIDTH-1:0] dma_wdata,
input dma_wready,
input dma_xfer_req,
output [ 3:0] dma_xfer_status);
localparam DMA_MEM_RATIO = ADC_DATA_WIDTH/DMA_DATA_WIDTH;
localparam ADC_ADDRESS_WIDTH = (DMA_MEM_RATIO == 1) ? (DMA_ADDRESS_WIDTH) :
(DMA_MEM_RATIO == 2) ? (DMA_ADDRESS_WIDTH - 1) :
((DMA_MEM_RATIO == 4) ? (DMA_ADDRESS_WIDTH - 2) :
(DMA_ADDRESS_WIDTH - 3));
localparam ADC_ADDR_LIMIT = (2**ADC_ADDRESS_WIDTH)-1;
localparam DMA_ADDR_LIMIT = (2**DMA_ADDRESS_WIDTH)-1;
// internal registers
reg [ 2:0] adc_xfer_req_m = 'd0;
reg adc_xfer_init = 'd0;
reg adc_xfer_enable = 'd0;
reg adc_wr_int = 'd0;
reg [ADC_DATA_WIDTH-1:0] adc_wdata_int = 'd0;
reg [ADC_ADDRESS_WIDTH-1:0] adc_waddr_int = 'd0;
reg adc_waddr_rel_t = 'd0;
reg [ADC_ADDRESS_WIDTH-1:0] adc_waddr_rel = 'd0;
reg dma_rst = 'd0;
reg [ 2:0] dma_waddr_rel_t_m = 'd0;
reg [ADC_ADDRESS_WIDTH-1:0] dma_waddr_rel = 'd0;
reg dma_rd = 'd0;
reg dma_rd_d = 'd0;
reg [DMA_DATA_WIDTH-1:0] dma_rdata_d = 'd0;
reg [DMA_ADDRESS_WIDTH-1:0] dma_raddr = 'd0;
// internal signals
wire dma_waddr_rel_t_s;
wire [DMA_ADDRESS_WIDTH-1:0] dma_waddr_rel_s;
wire dma_wready_s;
wire dma_rd_s;
wire [DMA_DATA_WIDTH-1:0] dma_rdata_s;
// write interface
assign adc_wovf = 1'd0;
always @(posedge adc_clk or posedge adc_rst) begin
if (adc_rst == 1'b1) begin
adc_xfer_req_m <= 'd0;
adc_xfer_init <= 'd0;
adc_xfer_enable <= 'd0;
end else begin
adc_xfer_req_m <= {adc_xfer_req_m[1:0], dma_xfer_req};
adc_xfer_init <= adc_xfer_req_m[1] & ~adc_xfer_req_m[2];
if (adc_xfer_init == 1'b1) begin
adc_xfer_enable <= 1'b1;
end else if ((adc_waddr_int >= ADC_ADDR_LIMIT - 1) ||
(adc_xfer_req_m[2] == 1'b0)) begin
adc_xfer_enable <= 1'b0;
end
end
end
always @(posedge adc_clk or posedge adc_rst) begin
if (adc_rst == 1'b1) begin
adc_wr_int <= 'd0;
adc_wdata_int <= 'd0;
adc_waddr_int <= 'd0;
end else begin
if (adc_xfer_init == 1'b1) begin
adc_wr_int <= 'd0;
adc_wdata_int <= 'd0;
adc_waddr_int <= 'd0;
end else begin
adc_wr_int <= adc_wr & adc_xfer_enable;
adc_wdata_int <= adc_wdata;
if (adc_wr_int == 1'b1) begin
adc_waddr_int <= adc_waddr_int + 1'b1;
end
end
end
end
always @(posedge adc_clk or posedge adc_rst) begin
if (adc_rst == 1'b1) begin
adc_waddr_rel_t <= 'd0;
adc_waddr_rel <= 'd0;
end else begin
if ((adc_wr_int == 1'b1) && (adc_waddr_int[2:0] == 3'h7)) begin
adc_waddr_rel_t <= ~adc_waddr_rel_t;
adc_waddr_rel <= adc_waddr_int;
end
end
end
// read interface
assign dma_xfer_status = 4'd0;
assign dma_waddr_rel_t_s = dma_waddr_rel_t_m[2] ^ dma_waddr_rel_t_m[1];
assign dma_waddr_rel_s = (DMA_MEM_RATIO == 1) ? dma_waddr_rel :
(DMA_MEM_RATIO == 2) ? {dma_waddr_rel, 1'd0} :
((DMA_MEM_RATIO == 4) ? {dma_waddr_rel, 2'd0} :
{dma_waddr_rel, 3'd0});
always @(posedge dma_clk) begin
if (dma_xfer_req == 1'b0) begin
dma_rst <= 1'b1;
dma_waddr_rel_t_m <= 'd0;
dma_waddr_rel <= 'd0;
end else begin
dma_rst <= 1'b0;
dma_waddr_rel_t_m <= {dma_waddr_rel_t_m[1:0], adc_waddr_rel_t};
if (dma_waddr_rel_t_s == 1'b1) begin
dma_waddr_rel <= adc_waddr_rel;
end
end
end
assign dma_wready_s = (DMA_READY_ENABLE == 0) ? 1'b1 : dma_wready;
assign dma_rd_s = (dma_raddr < dma_waddr_rel_s) ? dma_wready_s : 1'b0;
always @(posedge dma_clk) begin
if (dma_xfer_req == 1'b0) begin
dma_rd <= 'd0;
dma_rd_d <= 'd0;
dma_rdata_d <= 'd0;
dma_raddr <= 'd0;
end else begin
dma_rd <= dma_rd_s;
dma_rd_d <= dma_rd;
dma_rdata_d <= dma_rdata_s;
if (dma_rd_s == 1'b1) begin
if (dma_raddr < DMA_ADDR_LIMIT) begin
dma_raddr <= dma_raddr + 1'b1;
end
end
end
end
// instantiations
generate
if (DEVICE_TYPE == 1) begin
alt_mem_asym i_mem_asym (
.mem_i_wrclock (adc_clk),
.mem_i_wren (adc_wr_int),
.mem_i_wraddress (adc_waddr_int),
.mem_i_datain (adc_wdata_int),
.mem_i_rdclock (dma_clk),
.mem_i_rdaddress (dma_raddr),
.mem_o_dataout (dma_rdata_s));
end else begin
ad_mem_asym #(
.A_ADDRESS_WIDTH (ADC_ADDRESS_WIDTH),
.A_DATA_WIDTH (ADC_DATA_WIDTH),
.B_ADDRESS_WIDTH (DMA_ADDRESS_WIDTH),
.B_DATA_WIDTH (DMA_DATA_WIDTH))
i_mem_asym (
.clka (adc_clk),
.wea (adc_wr_int),
.addra (adc_waddr_int),
.dina (adc_wdata_int),
.clkb (dma_clk),
.addrb (dma_raddr),
.doutb (dma_rdata_s));
end
endgenerate
ad_axis_inf_rx #(.DATA_WIDTH(DMA_DATA_WIDTH)) i_axis_inf (
.clk (dma_clk),
.rst (dma_rst),
.valid (dma_rd_d),
.last (1'd0),
.data (dma_rdata_d),
.inf_valid (dma_wr),
.inf_last (),
.inf_data (dma_wdata),
.inf_ready (dma_wready));
endmodule
// ***************************************************************************
// ***************************************************************************