pluto_hdl_adi/library/axi_ad7616/axi_ad7616_control.v

297 lines
8.4 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2013(c) Analog Devices, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// - Neither the name of Analog Devices, Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
// - The use of this software may or may not infringe the patent rights
// of one or more patent holders. This license does not release you
// from the requirement that you obtain separate licenses from these
// patent holders to use this software.
// - Use of the software either in source or binary form, must be run
// on or directly connected to an Analog Devices Inc. component.
//
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED.
//
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module axi_ad7616_control (
// control signals
reset_n,
cnvst,
busy,
seq_en,
hw_rngsel,
chsel,
crcen,
burst,
os,
end_of_conv,
// bus interface
up_rstn,
up_clk,
up_wreq,
up_waddr,
up_wdata,
up_wack,
up_rreq,
up_raddr,
up_rdata,
up_rack
);
parameter ID = 0;
parameter OP_MODE = 0;
localparam PCORE_VERSION = 'h0001001;
localparam SW = 0;
localparam HW = 1;
localparam POS_EDGE = 0;
localparam NEG_EDGE = 1;
output reset_n;
output cnvst;
input busy;
output seq_en;
output [ 1:0] hw_rngsel;
output [ 2:0] chsel;
output crcen;
output burst;
output [ 2:0] os;
output end_of_conv;
// bus interface
input up_rstn;
input up_clk;
input up_wreq;
input [13:0] up_waddr;
input [31:0] up_wdata;
output up_wack;
input up_rreq;
input [13:0] up_raddr;
output [31:0] up_rdata;
output up_rack;
// internal signals
reg [31:0] up_scratch = 32'b0;
reg up_resetn = 1'b0;
reg up_cnvst_en = 1'b0;
reg up_wack = 1'b0;
reg up_rack = 1'b0;
reg [31:0] up_rdata = 32'b0;
reg [31:0] up_conv_rate = 32'b0;
reg [31:0] cnvst_counter = 32'b0;
reg [ 3:0] pulse_counter = 8'b0;
reg cnvst_buf = 1'b0;
reg cnvst_pulse = 1'b0;
reg [ 2:0] chsel_ff = 3'b0;
reg [ 1:0] up_hw_rngsel = 2'b0;
reg [ 2:0] up_chsel = 3'b0;
reg up_crcen = 1'b0;
reg up_burst = 1'b0;
reg [ 2:0] up_os = 3'b0;
reg up_seq_en = 1'b0;
wire up_rst;
wire up_rreq_s;
wire up_wreq_s;
wire end_of_conv_s;
// decode block select
assign up_wreq_s = (up_waddr[13:8] == 6'h01) ? up_wreq : 1'b0;
assign up_rreq_s = (up_raddr[13:8] == 6'h01) ? up_rreq : 1'b0;
assign end_of_conv = end_of_conv_s;
// processor write interface
always @(negedge up_rstn or posedge up_clk) begin
if (up_rstn == 0) begin
up_wack <= 1'h0;
up_scratch <= 32'b0;
up_resetn <= 1'b0;
up_cnvst_en <= 1'b0;
up_conv_rate <= 32'b0;
up_hw_rngsel <= 2'b0;
up_chsel <= 3'b0;
up_crcen <= 1'b0;
up_burst <= 1'b0;
up_os <= 3'b0;
up_seq_en <= 1'b0;
end else begin
up_wack <= up_wreq_s;
if ((up_wreq_s == 1'b1) && (up_waddr[7:0] == 8'h02)) begin
up_scratch <= up_wdata;
end
if ((up_wreq_s == 1'b1) && (up_waddr[7:0] == 8'h10)) begin
up_resetn <= up_wdata[0];
up_cnvst_en <= up_wdata[1];
end
if ((up_wreq_s == 1'b1) && (up_waddr[7:0] == 8'h11)) begin
up_conv_rate <= up_wdata;
end
if ((up_wreq_s == 1'b1) && (up_waddr[7:0] == 8'h12)) begin
up_hw_rngsel <= up_wdata[1:0];
up_os <= up_wdata[4:2];
end
if ((up_wreq_s == 1'b1) && (up_waddr[7:0] == 8'h13)) begin
up_seq_en <= up_wdata[0];
up_burst <= up_wdata[1];
up_chsel <= up_wdata[4:2];
end
if ((up_wreq_s == 1'b1) && (up_waddr[7:0] == 8'h14)) begin
up_crcen <= up_wdata[0];
end
end
end
// processor read interface
always @(negedge up_rstn or posedge up_clk) begin
if (up_rstn == 0) begin
up_rack <= 1'b0;
up_rdata <= 32'b0;
end else begin
up_rack <= up_rreq_s;
if (up_rreq_s == 1'b1) begin
case (up_raddr[7:0])
8'h00 : up_rdata = PCORE_VERSION;
8'h01 : up_rdata = ID;
8'h02 : up_rdata = up_scratch;
8'h10 : up_rdata = {29'b0, up_cnvst_en, up_resetn};
8'h11 : up_rdata = up_conv_rate;
8'h12 : up_rdata = {27'b0, up_os, up_hw_rngsel};
8'h13 : up_rdata = {27'b0, up_chsel, up_burst, up_seq_en};
8'h14 : up_rdata = {30'b0, up_crcen};
endcase
end
end
end
// instantiations
assign up_rst = ~up_rstn;
ad_edge_detect #(
.EDGE(NEG_EDGE)
) i_ad_edge_detect (
.clk (up_clk),
.rst (up_rst),
.in (busy),
.out (end_of_conv_s)
);
// convertion start generator
// NOTE: + The minimum convertion cycle is 1 us
// + The rate of the cnvst must be defined in a way,
// to not lose any data. cnvst_rate >= t_conversion + t_aquisition
// See the AD7616 datasheet for more information.
always @(posedge up_clk) begin
if(up_resetn == 1'b0) begin
cnvst_counter <= 32'b0;
end else begin
cnvst_counter <= (cnvst_counter < up_conv_rate) ? cnvst_counter + 1 : 32'b0;
end
end
always @(cnvst_counter, up_conv_rate) begin
cnvst_pulse <= (cnvst_counter == up_conv_rate) ? 1'b1 : 1'b0;
end
always @(posedge up_clk) begin
if(up_resetn == 1'b0) begin
pulse_counter <= 3'b0;
cnvst_buf <= 1'b0;
end else begin
pulse_counter <= (cnvst == 1'b1) ? pulse_counter + 1 : 3'b0;
if(cnvst_pulse == 1'b1) begin
cnvst_buf <= 1'b1;
end else if (pulse_counter[2] == 1'b1) begin
cnvst_buf <= 1'b0;
end
end
end
assign cnvst = (up_cnvst_en == 1'b1) ? cnvst_buf : 1'b0;
// output logic
assign reset_n = up_resetn; // device's reset
generate if (OP_MODE == SW) begin
// ground all the unused control signals
assign seq_en = 1'b0;
assign hw_rngsel = 2'b0;
assign chsel = 3'b0;
assign crcen = 1'b0;
assign burst = 1'b0;
assign os = 3'b0;
end
endgenerate
generate if (OP_MODE == HW) begin
assign hw_rngsel = up_hw_rngsel;
assign crcen = up_crcen;
assign burst = up_burst;
assign os = up_os;
assign seq_en = up_seq_en;
assign chsel = chsel_ff;
// CHSEL is updated after BUSY deasserts
always @(posedge up_clk) begin
if (up_rstn == 1'b0) begin
chsel_ff <= 3'b0;
end else begin
chsel_ff <= (end_of_conv_s == 1'b1) ? up_chsel : chsel_ff;
end
end
end
endgenerate
endmodule