// *************************************************************************** // *************************************************************************** // Copyright (C) 2014-2023 Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module util_mfifo #( parameter NUM_OF_CHANNELS = 4, parameter DIN_DATA_WIDTH = 32, parameter ADDRESS_WIDTH = 8 ) ( // d-in interface input din_rst, input din_clk, input din_valid, input [DIN_DATA_WIDTH-1:0] din_data_0, input [DIN_DATA_WIDTH-1:0] din_data_1, input [DIN_DATA_WIDTH-1:0] din_data_2, input [DIN_DATA_WIDTH-1:0] din_data_3, input [DIN_DATA_WIDTH-1:0] din_data_4, input [DIN_DATA_WIDTH-1:0] din_data_5, input [DIN_DATA_WIDTH-1:0] din_data_6, input [DIN_DATA_WIDTH-1:0] din_data_7, // d-out interface input dout_rst, input dout_clk, output reg dout_valid, output [15:0] dout_data_0, output [15:0] dout_data_1, output [15:0] dout_data_2, output [15:0] dout_data_3, output [15:0] dout_data_4, output [15:0] dout_data_5, output [15:0] dout_data_6, output [15:0] dout_data_7 ); // internal registers reg din_dout_toggle_m1 = 'd0; reg din_dout_toggle_m2 = 'd0; reg din_dout_toggle_m3 = 'd0; reg din_wr = 'd0; reg [(ADDRESS_WIDTH-1):0] din_waddr = 'd0; reg din_enable = 'd0; reg din_toggle = 'd0; reg dout_din_toggle_m1 = 'd0; reg dout_din_toggle_m2 = 'd0; reg dout_din_toggle_m3 = 'd0; reg [ 4:0] dout_cnt = 'd0; reg dout_ld = 'd0; reg dout_ld_d = 'd0; reg [(ADDRESS_WIDTH-1):0] dout_raddr = 'd0; reg dout_enable = 'd0; reg dout_toggle = 'd0; reg [(DIN_DATA_WIDTH-1):0] dout_rdata_0 = 'd0; reg [(DIN_DATA_WIDTH-1):0] dout_rdata_1 = 'd0; reg [(DIN_DATA_WIDTH-1):0] dout_rdata_2 = 'd0; reg [(DIN_DATA_WIDTH-1):0] dout_rdata_3 = 'd0; reg [(DIN_DATA_WIDTH-1):0] dout_rdata_4 = 'd0; reg [(DIN_DATA_WIDTH-1):0] dout_rdata_5 = 'd0; reg [(DIN_DATA_WIDTH-1):0] dout_rdata_6 = 'd0; reg [(DIN_DATA_WIDTH-1):0] dout_rdata_7 = 'd0; // internal signals wire [(DIN_DATA_WIDTH-1):0] din_wdata_s[0:7]; wire din_waddr_max_s; wire din_dout_toggle_s; wire dout_raddr_max_s; wire dout_rd_s; wire dout_din_toggle_s; wire [(DIN_DATA_WIDTH-1):0] dout_rdata_s[0:7]; // variables genvar n; // write interface assign din_wdata_s[7] = din_data_7; assign din_wdata_s[6] = din_data_6; assign din_wdata_s[5] = din_data_5; assign din_wdata_s[4] = din_data_4; assign din_wdata_s[3] = din_data_3; assign din_wdata_s[2] = din_data_2; assign din_wdata_s[1] = din_data_1; assign din_wdata_s[0] = din_data_0; assign din_waddr_max_s = & din_waddr; assign din_dout_toggle_s = din_dout_toggle_m3 ^ din_dout_toggle_m2; always @(posedge din_clk or posedge din_rst) begin if (din_rst == 1'b1) begin din_dout_toggle_m1 <= 1'd0; din_dout_toggle_m2 <= 1'd0; din_dout_toggle_m3 <= 1'd0; din_wr <= 1'd0; din_waddr <= 'd0; din_enable <= 1'd0; din_toggle <= 1'd0; end else begin din_dout_toggle_m1 <= dout_toggle; din_dout_toggle_m2 <= din_dout_toggle_m1; din_dout_toggle_m3 <= din_dout_toggle_m2; din_wr <= din_valid & din_enable; if (din_dout_toggle_s == 1'b1) begin din_waddr <= 'd0; din_enable <= 1'b1; end else if (din_wr == 1'b1) begin din_waddr <= din_waddr + 1'b1; if (din_waddr_max_s == 1) begin din_enable <= 1'b0; end end if ((din_wr == 1'b1) && (din_waddr_max_s == 1)) begin din_toggle <= ~din_toggle; end end end // read interface assign dout_raddr_max_s = & dout_raddr; assign dout_rd_s = (dout_cnt == 5'd0) ? dout_enable : 1'b0; assign dout_din_toggle_s = dout_din_toggle_m3 ^ dout_din_toggle_m2; always @(posedge dout_clk or posedge dout_rst) begin if (dout_rst == 1'b1) begin dout_din_toggle_m1 <= 1'd0; dout_din_toggle_m2 <= 1'd0; dout_din_toggle_m3 <= 1'd0; dout_cnt <= 'd0; dout_ld <= 'd0; dout_ld_d <= 'd0; dout_raddr <= 'd0; dout_enable <= 1'd0; dout_toggle <= 1'd1; end else begin dout_din_toggle_m1 <= din_toggle; dout_din_toggle_m2 <= dout_din_toggle_m1; dout_din_toggle_m3 <= dout_din_toggle_m2; if ((dout_din_toggle_s == 1'b1) || (dout_cnt >= ((DIN_DATA_WIDTH/16) - 1))) begin dout_cnt <= 'd0; end else begin dout_cnt <= dout_cnt + 1'b1; end dout_ld <= | dout_cnt; dout_ld_d <= dout_ld; if (dout_din_toggle_s == 1'b1) begin dout_raddr <= 'd0; dout_enable <= 1'b1; end else if (dout_rd_s == 1'b1) begin dout_raddr <= dout_raddr + 1'b1; if (dout_raddr_max_s == 1'b1) begin dout_enable <= 1'b0; end end if ((dout_rd_s == 1'b1) && (dout_raddr_max_s == 1'b1)) begin dout_toggle <= ~dout_toggle; end end end always @(posedge dout_clk or posedge dout_rst) begin if (dout_rst == 1'b1) begin dout_valid <= 'd0; dout_rdata_0 <= 'd0; dout_rdata_1 <= 'd0; dout_rdata_2 <= 'd0; dout_rdata_3 <= 'd0; dout_rdata_4 <= 'd0; dout_rdata_5 <= 'd0; dout_rdata_6 <= 'd0; dout_rdata_7 <= 'd0; end else begin if (dout_ld_d == 1'b0) begin dout_valid <= dout_enable; dout_rdata_0 <= dout_rdata_s[0]; dout_rdata_1 <= dout_rdata_s[1]; dout_rdata_2 <= dout_rdata_s[2]; dout_rdata_3 <= dout_rdata_s[3]; dout_rdata_4 <= dout_rdata_s[4]; dout_rdata_5 <= dout_rdata_s[5]; dout_rdata_6 <= dout_rdata_s[6]; dout_rdata_7 <= dout_rdata_s[7]; end else begin dout_valid <= dout_valid; dout_rdata_0 <= {16'd0, dout_rdata_0[(DIN_DATA_WIDTH-1):16]}; dout_rdata_1 <= {16'd0, dout_rdata_1[(DIN_DATA_WIDTH-1):16]}; dout_rdata_2 <= {16'd0, dout_rdata_2[(DIN_DATA_WIDTH-1):16]}; dout_rdata_3 <= {16'd0, dout_rdata_3[(DIN_DATA_WIDTH-1):16]}; dout_rdata_4 <= {16'd0, dout_rdata_4[(DIN_DATA_WIDTH-1):16]}; dout_rdata_5 <= {16'd0, dout_rdata_5[(DIN_DATA_WIDTH-1):16]}; dout_rdata_6 <= {16'd0, dout_rdata_6[(DIN_DATA_WIDTH-1):16]}; dout_rdata_7 <= {16'd0, dout_rdata_7[(DIN_DATA_WIDTH-1):16]}; end end end assign dout_data_0 = dout_rdata_0[15:0]; assign dout_data_1 = dout_rdata_1[15:0]; assign dout_data_2 = dout_rdata_2[15:0]; assign dout_data_3 = dout_rdata_3[15:0]; assign dout_data_4 = dout_rdata_4[15:0]; assign dout_data_5 = dout_rdata_5[15:0]; assign dout_data_6 = dout_rdata_6[15:0]; assign dout_data_7 = dout_rdata_7[15:0]; // instantiations generate if (NUM_OF_CHANNELS < 8) begin for (n = NUM_OF_CHANNELS; n < 8; n = n + 1) begin: g_channels_unused assign dout_rdata_s[n] = 'd0; end end for (n = 0; n < NUM_OF_CHANNELS; n = n + 1) begin: g_channels ad_mem #( .ADDRESS_WIDTH (ADDRESS_WIDTH), .DATA_WIDTH (DIN_DATA_WIDTH) ) i_mem ( .clka (din_clk), .wea (din_wr), .addra (din_waddr), .dina (din_wdata_s[n]), .clkb (dout_clk), .reb (1'b1), .addrb (dout_raddr), .doutb (dout_rdata_s[n])); end endgenerate endmodule