// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** module dmac_request_arb #( parameter DMA_DATA_WIDTH_SRC = 64, parameter DMA_DATA_WIDTH_DEST = 64, parameter DMA_LENGTH_WIDTH = 24, parameter BYTES_PER_BEAT_WIDTH_DEST = $clog2(DMA_DATA_WIDTH_DEST/8), parameter BYTES_PER_BEAT_WIDTH_SRC = $clog2(DMA_DATA_WIDTH_SRC/8), parameter DMA_TYPE_DEST = 0, parameter DMA_TYPE_SRC = 2, parameter DMA_AXI_ADDR_WIDTH = 32, parameter ASYNC_CLK_REQ_SRC = 1, parameter ASYNC_CLK_SRC_DEST = 1, parameter ASYNC_CLK_DEST_REQ = 1, parameter AXI_SLICE_DEST = 0, parameter AXI_SLICE_SRC = 0, parameter MAX_BYTES_PER_BURST = 128, parameter FIFO_SIZE = 8, parameter ID_WIDTH = $clog2(FIFO_SIZE*2), parameter AXI_LENGTH_WIDTH_SRC = 8, parameter AXI_LENGTH_WIDTH_DEST = 8)( input req_clk, input req_resetn, input req_valid, output req_ready, input [DMA_AXI_ADDR_WIDTH-1:BYTES_PER_BEAT_WIDTH_DEST] req_dest_address, input [DMA_AXI_ADDR_WIDTH-1:BYTES_PER_BEAT_WIDTH_SRC] req_src_address, input [DMA_LENGTH_WIDTH-1:0] req_length, input req_xlast, input req_sync_transfer_start, output reg eot, // Master AXI interface input m_dest_axi_aclk, input m_dest_axi_aresetn, input m_src_axi_aclk, input m_src_axi_aresetn, // Write address output [DMA_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output [AXI_LENGTH_WIDTH_DEST-1:0] m_axi_awlen, output [ 2:0] m_axi_awsize, output [ 1:0] m_axi_awburst, output [ 2:0] m_axi_awprot, output [ 3:0] m_axi_awcache, output m_axi_awvalid, input m_axi_awready, // Write data output [DMA_DATA_WIDTH_DEST-1:0] m_axi_wdata, output [(DMA_DATA_WIDTH_DEST/8)-1:0] m_axi_wstrb, input m_axi_wready, output m_axi_wvalid, output m_axi_wlast, // Write response input m_axi_bvalid, input [ 1:0] m_axi_bresp, output m_axi_bready, // Read address input m_axi_arready, output m_axi_arvalid, output [DMA_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output [AXI_LENGTH_WIDTH_SRC-1:0] m_axi_arlen, output [ 2:0] m_axi_arsize, output [ 1:0] m_axi_arburst, output [ 2:0] m_axi_arprot, output [ 3:0] m_axi_arcache, // Read data and response input [DMA_DATA_WIDTH_SRC-1:0] m_axi_rdata, output m_axi_rready, input m_axi_rvalid, input m_axi_rlast, input [ 1:0] m_axi_rresp, // Slave streaming AXI interface input s_axis_aclk, output s_axis_ready, input s_axis_valid, input [DMA_DATA_WIDTH_SRC-1:0] s_axis_data, input s_axis_last, input [0:0] s_axis_user, output s_axis_xfer_req, // Master streaming AXI interface input m_axis_aclk, input m_axis_ready, output m_axis_valid, output [DMA_DATA_WIDTH_DEST-1:0] m_axis_data, output m_axis_last, output m_axis_xfer_req, // Input FIFO interface input fifo_wr_clk, input fifo_wr_en, input [DMA_DATA_WIDTH_SRC-1:0] fifo_wr_din, output fifo_wr_overflow, input fifo_wr_sync, output fifo_wr_xfer_req, // Input FIFO interface input fifo_rd_clk, input fifo_rd_en, output fifo_rd_valid, output [DMA_DATA_WIDTH_DEST-1:0] fifo_rd_dout, output fifo_rd_underflow, output fifo_rd_xfer_req, output [ID_WIDTH-1:0] dbg_dest_request_id, output [ID_WIDTH-1:0] dbg_dest_address_id, output [ID_WIDTH-1:0] dbg_dest_data_id, output [ID_WIDTH-1:0] dbg_dest_response_id, output [ID_WIDTH-1:0] dbg_src_request_id, output [ID_WIDTH-1:0] dbg_src_address_id, output [ID_WIDTH-1:0] dbg_src_data_id, output [ID_WIDTH-1:0] dbg_src_response_id, input req_enable, output dest_clk, input dest_resetn, output dest_ext_resetn, input dest_enable, output dest_enabled, output src_clk, input src_resetn, output src_ext_resetn, input src_enable, output src_enabled ); localparam DMA_TYPE_MM_AXI = 0; localparam DMA_TYPE_STREAM_AXI = 1; localparam DMA_TYPE_FIFO = 2; localparam DMA_ADDRESS_WIDTH_DEST = DMA_AXI_ADDR_WIDTH - BYTES_PER_BEAT_WIDTH_DEST; localparam DMA_ADDRESS_WIDTH_SRC = DMA_AXI_ADDR_WIDTH - BYTES_PER_BEAT_WIDTH_SRC; // Bytes per burst is the same for both dest and src, but bytes per beat may // differ, so beats per burst may also differ localparam BYTES_PER_BURST_WIDTH = MAX_BYTES_PER_BURST > 2048 ? 12 : MAX_BYTES_PER_BURST > 1024 ? 11 : MAX_BYTES_PER_BURST > 512 ? 10 : MAX_BYTES_PER_BURST > 256 ? 9 : MAX_BYTES_PER_BURST > 128 ? 8 : MAX_BYTES_PER_BURST > 64 ? 7 : MAX_BYTES_PER_BURST > 32 ? 6 : MAX_BYTES_PER_BURST > 16 ? 5 : MAX_BYTES_PER_BURST > 8 ? 4 : MAX_BYTES_PER_BURST > 4 ? 3 : MAX_BYTES_PER_BURST > 2 ? 2 : 1; localparam BEATS_PER_BURST_WIDTH_SRC = BYTES_PER_BURST_WIDTH - BYTES_PER_BEAT_WIDTH_SRC; localparam BEATS_PER_BURST_WIDTH_DEST = BYTES_PER_BURST_WIDTH - BYTES_PER_BEAT_WIDTH_DEST; localparam BURSTS_PER_TRANSFER_WIDTH = DMA_LENGTH_WIDTH - BYTES_PER_BURST_WIDTH; reg eot_mem[0:2**ID_WIDTH-1]; wire request_eot; wire [ID_WIDTH-1:0] request_id; wire [ID_WIDTH-1:0] response_id; wire enabled_src; wire enabled_dest; wire req_gen_valid; wire req_gen_ready; wire req_dest_valid; wire req_dest_ready; wire req_src_valid; wire req_src_ready; wire dest_req_valid; wire dest_req_ready; wire [DMA_ADDRESS_WIDTH_DEST-1:0] dest_req_address; wire [BEATS_PER_BURST_WIDTH_DEST-1:0] dest_req_last_burst_length; wire dest_req_xlast; wire dest_response_valid; wire dest_response_ready; wire dest_response_empty; wire [1:0] dest_response_resp; wire dest_response_resp_eot; wire [ID_WIDTH-1:0] dest_request_id; wire [ID_WIDTH-1:0] dest_data_request_id; wire [ID_WIDTH-1:0] dest_data_response_id; wire [ID_WIDTH-1:0] dest_response_id; wire dest_valid; wire dest_ready; wire [DMA_DATA_WIDTH_DEST-1:0] dest_data; wire dest_last; wire dest_fifo_valid; wire dest_fifo_ready; wire [DMA_DATA_WIDTH_DEST-1:0] dest_fifo_data; wire dest_fifo_last; wire src_req_valid; wire src_req_ready; wire [DMA_ADDRESS_WIDTH_SRC-1:0] src_req_address; wire [BEATS_PER_BURST_WIDTH_SRC-1:0] src_req_last_burst_length; wire src_req_sync_transfer_start; wire src_req_xlast; /* TODO wire src_response_valid; wire src_response_ready; wire src_response_empty; wire [1:0] src_response_resp; */ wire [ID_WIDTH-1:0] src_request_id; wire [ID_WIDTH-1:0] src_response_id; wire src_valid; wire src_ready; wire [DMA_DATA_WIDTH_SRC-1:0] src_data; wire src_last; wire src_fifo_valid; wire src_fifo_ready; wire [DMA_DATA_WIDTH_SRC-1:0] src_fifo_data; wire src_fifo_last; wire response_dest_valid; wire response_dest_ready = 1'b1; wire [1:0] response_dest_resp; wire response_dest_resp_eot; /* Unused for now wire response_src_valid; wire response_src_ready = 1'b1; wire [1:0] response_src_resp; */ assign dbg_dest_request_id = dest_request_id; assign dbg_dest_response_id = dest_response_id; assign dbg_src_request_id = src_request_id; assign dbg_src_response_id = src_response_id; always @(posedge req_clk) begin eot_mem[request_id] <= request_eot; end always @(posedge req_clk) begin if (req_resetn == 1'b0) begin eot <= 1'b0; end else begin eot <= response_dest_valid & response_dest_ready & response_dest_resp_eot; end end generate if (DMA_TYPE_DEST == DMA_TYPE_MM_AXI) begin assign dest_clk = m_dest_axi_aclk; assign dest_ext_resetn = m_dest_axi_aresetn; wire [ID_WIDTH-1:0] dest_address_id; wire dest_address_eot = eot_mem[dest_address_id]; wire dest_response_eot = eot_mem[dest_response_id]; assign dbg_dest_address_id = dest_address_id; assign dbg_dest_data_id = dest_data_response_id; assign dest_data_request_id = dest_address_id; dmac_dest_mm_axi #( .ID_WIDTH(ID_WIDTH), .DMA_DATA_WIDTH(DMA_DATA_WIDTH_DEST), .DMA_ADDR_WIDTH(DMA_AXI_ADDR_WIDTH), .BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_DEST), .BYTES_PER_BEAT_WIDTH(BYTES_PER_BEAT_WIDTH_DEST), .AXI_LENGTH_WIDTH(AXI_LENGTH_WIDTH_DEST) ) i_dest_dma_mm ( .m_axi_aclk(m_dest_axi_aclk), .m_axi_aresetn(dest_resetn), .enable(dest_enable), .enabled(dest_enabled), .req_valid(dest_req_valid), .req_ready(dest_req_ready), .req_address(dest_req_address), .req_last_burst_length(dest_req_last_burst_length), .response_valid(dest_response_valid), .response_ready(dest_response_ready), .response_resp(dest_response_resp), .response_resp_eot(dest_response_resp_eot), .request_id(dest_request_id), .response_id(dest_response_id), .address_id(dest_address_id), .address_eot(dest_address_eot), .response_eot(dest_response_eot), .fifo_valid(dest_valid), .fifo_ready(dest_ready), .fifo_data(dest_data), .fifo_last(dest_last), .m_axi_awready(m_axi_awready), .m_axi_awvalid(m_axi_awvalid), .m_axi_awaddr(m_axi_awaddr), .m_axi_awlen(m_axi_awlen), .m_axi_awsize(m_axi_awsize), .m_axi_awburst(m_axi_awburst), .m_axi_awprot(m_axi_awprot), .m_axi_awcache(m_axi_awcache), .m_axi_wready(m_axi_wready), .m_axi_wvalid(m_axi_wvalid), .m_axi_wdata(m_axi_wdata), .m_axi_wstrb(m_axi_wstrb), .m_axi_wlast(m_axi_wlast), .m_axi_bvalid(m_axi_bvalid), .m_axi_bresp(m_axi_bresp), .m_axi_bready(m_axi_bready) ); end else begin assign m_axi_awvalid = 1'b0; assign m_axi_awaddr = 'h00; assign m_axi_awlen = 'h00; assign m_axi_awsize = 'h00; assign m_axi_awburst = 'h00; assign m_axi_awprot = 'h00; assign m_axi_awcache = 'h00; assign m_axi_wvalid = 1'b0; assign m_axi_wdata = 'h00; assign m_axi_wstrb = 'h00; assign m_axi_wlast = 1'b0; assign m_axi_bready = 1'b0; end if (DMA_TYPE_DEST == DMA_TYPE_STREAM_AXI) begin assign dest_clk = m_axis_aclk; assign dest_ext_resetn = 1'b1; wire [ID_WIDTH-1:0] data_id; wire data_eot = eot_mem[data_id]; wire response_eot = eot_mem[dest_response_id]; assign dest_data_request_id = dest_request_id; assign dbg_dest_address_id = 'h00; assign dbg_dest_data_id = data_id; dmac_dest_axi_stream #( .ID_WIDTH(ID_WIDTH), .S_AXIS_DATA_WIDTH(DMA_DATA_WIDTH_DEST), .BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_DEST) ) i_dest_dma_stream ( .s_axis_aclk(m_axis_aclk), .s_axis_aresetn(dest_resetn), .enable(dest_enable), .enabled(dest_enabled), .req_valid(dest_req_valid), .req_ready(dest_req_ready), .req_last_burst_length(dest_req_last_burst_length), .req_xlast(dest_req_xlast), .response_valid(dest_response_valid), .response_ready(dest_response_ready), .response_resp(dest_response_resp), .response_resp_eot(dest_response_resp_eot), .response_id(dest_response_id), .data_id(data_id), .xfer_req(m_axis_xfer_req), .data_eot(data_eot), .response_eot(response_eot), .fifo_valid(dest_valid), .fifo_ready(dest_ready), .fifo_data(dest_data), .fifo_last(dest_last), .m_axis_valid(m_axis_valid), .m_axis_ready(m_axis_ready), .m_axis_data(m_axis_data), .m_axis_last(m_axis_last) ); end else begin assign m_axis_valid = 1'b0; assign m_axis_last = 1'b0; assign m_axis_xfer_req = 1'b0; assign m_axis_data = 'h00; end if (DMA_TYPE_DEST == DMA_TYPE_FIFO) begin assign dest_clk = fifo_rd_clk; assign dest_ext_resetn = 1'b1; wire [ID_WIDTH-1:0] data_id; wire data_eot = eot_mem[data_id]; wire response_eot = eot_mem[dest_response_id]; assign dest_data_request_id = dest_request_id; assign dbg_dest_address_id = 'h00; assign dbg_dest_data_id = data_id; dmac_dest_fifo_inf #( .ID_WIDTH(ID_WIDTH), .DATA_WIDTH(DMA_DATA_WIDTH_DEST), .BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_DEST) ) i_dest_dma_fifo ( .clk(fifo_rd_clk), .resetn(dest_resetn), .enable(dest_enable), .enabled(dest_enabled), .req_valid(dest_req_valid), .req_ready(dest_req_ready), .response_valid(dest_response_valid), .response_ready(dest_response_ready), .response_resp(dest_response_resp), .response_resp_eot(dest_response_resp_eot), .response_id(dest_response_id), .data_id(data_id), .data_eot(data_eot), .response_eot(response_eot), .fifo_valid(dest_valid), .fifo_ready(dest_ready), .fifo_data(dest_data), .fifo_last(dest_last), .en(fifo_rd_en), .valid(fifo_rd_valid), .dout(fifo_rd_dout), .underflow(fifo_rd_underflow), .xfer_req(fifo_rd_xfer_req) ); end else begin assign fifo_rd_valid = 1'b0; assign fifo_rd_dout = 'h0; assign fifo_rd_underflow = 1'b0; assign fifo_rd_xfer_req = 1'b0; end endgenerate generate if (DMA_TYPE_SRC == DMA_TYPE_MM_AXI) begin assign src_clk = m_src_axi_aclk; assign src_ext_resetn = m_src_axi_aresetn; wire [ID_WIDTH-1:0] src_data_id; wire [ID_WIDTH-1:0] src_address_id; wire src_address_eot = eot_mem[src_address_id]; assign dbg_src_address_id = src_address_id; assign dbg_src_data_id = src_data_id; dmac_src_mm_axi #( .ID_WIDTH(ID_WIDTH), .DMA_DATA_WIDTH(DMA_DATA_WIDTH_SRC), .DMA_ADDR_WIDTH(DMA_AXI_ADDR_WIDTH), .BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_SRC), .BYTES_PER_BEAT_WIDTH(BYTES_PER_BEAT_WIDTH_SRC), .AXI_LENGTH_WIDTH(AXI_LENGTH_WIDTH_SRC) ) i_src_dma_mm ( .m_axi_aclk(m_src_axi_aclk), .m_axi_aresetn(src_resetn), .enable(src_enable), .enabled(src_enabled), .req_valid(src_req_valid), .req_ready(src_req_ready), .req_address(src_req_address), .req_last_burst_length(src_req_last_burst_length), /* TODO .response_valid(src_response_valid), .response_ready(src_response_ready), .response_resp(src_response_resp), */ .request_id(src_request_id), .response_id(src_response_id), .address_id(src_address_id), .data_id(src_data_id), .address_eot(src_address_eot), .fifo_valid(src_valid), .fifo_ready(src_ready), .fifo_data(src_data), .fifo_last(src_last), .m_axi_arready(m_axi_arready), .m_axi_arvalid(m_axi_arvalid), .m_axi_araddr(m_axi_araddr), .m_axi_arlen(m_axi_arlen), .m_axi_arsize(m_axi_arsize), .m_axi_arburst(m_axi_arburst), .m_axi_arprot(m_axi_arprot), .m_axi_arcache(m_axi_arcache), .m_axi_rready(m_axi_rready), .m_axi_rvalid(m_axi_rvalid), .m_axi_rdata(m_axi_rdata), .m_axi_rlast(m_axi_rlast), .m_axi_rresp(m_axi_rresp) ); end else begin assign m_axi_arvalid = 1'b0; assign m_axi_araddr = 'h00; assign m_axi_arlen = 'h00; assign m_axi_arsize = 'h00; assign m_axi_arburst = 'h00; assign m_axi_arcache = 'h00; assign m_axi_arprot = 'h00; assign m_axi_rready = 1'b0; end if (DMA_TYPE_SRC == DMA_TYPE_STREAM_AXI) begin assign src_clk = s_axis_aclk; assign src_ext_resetn = 1'b1; wire src_eot = eot_mem[src_response_id]; assign dbg_src_address_id = 'h00; assign dbg_src_data_id = 'h00; /* TODO assign src_response_valid = 1'b0; assign src_response_resp = 2'b0; */ dmac_src_axi_stream #( .ID_WIDTH(ID_WIDTH), .S_AXIS_DATA_WIDTH(DMA_DATA_WIDTH_SRC), .BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_SRC) ) i_src_dma_stream ( .s_axis_aclk(s_axis_aclk), .s_axis_aresetn(src_resetn), .enable(src_enable), .enabled(src_enabled), .req_valid(src_req_valid), .req_ready(src_req_ready), .req_last_burst_length(src_req_last_burst_length), .req_sync_transfer_start(src_req_sync_transfer_start), .req_xlast(src_req_xlast), .request_id(src_request_id), .response_id(src_response_id), .eot(src_eot), .fifo_valid(src_valid), .fifo_ready(src_ready), .fifo_data(src_data), .fifo_last(src_last), .s_axis_valid(s_axis_valid), .s_axis_ready(s_axis_ready), .s_axis_data(s_axis_data), .s_axis_last(s_axis_last), .s_axis_user(s_axis_user), .s_axis_xfer_req(s_axis_xfer_req) ); end else begin assign s_axis_ready = 1'b0; assign s_axis_xfer_req = 1'b0; end if (DMA_TYPE_SRC == DMA_TYPE_FIFO) begin assign src_clk = fifo_wr_clk; assign src_ext_resetn = 1'b1; wire src_eot = eot_mem[src_response_id]; assign dbg_src_address_id = 'h00; assign dbg_src_data_id = 'h00; /* TODO assign src_response_valid = 1'b0; assign src_response_resp = 2'b0; */ dmac_src_fifo_inf #( .ID_WIDTH(ID_WIDTH), .DATA_WIDTH(DMA_DATA_WIDTH_SRC), .BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_SRC) ) i_src_dma_fifo ( .clk(fifo_wr_clk), .resetn(src_resetn), .enable(src_enable), .enabled(src_enabled), .req_valid(src_req_valid), .req_ready(src_req_ready), .req_last_burst_length(src_req_last_burst_length), .req_sync_transfer_start(src_req_sync_transfer_start), .request_id(src_request_id), .response_id(src_response_id), .eot(src_eot), .fifo_valid(src_valid), .fifo_ready(src_ready), .fifo_data(src_data), .fifo_last(src_last), .en(fifo_wr_en), .din(fifo_wr_din), .overflow(fifo_wr_overflow), .sync(fifo_wr_sync), .xfer_req(fifo_wr_xfer_req) ); end else begin assign fifo_wr_overflow = 1'b0; assign fifo_wr_xfer_req = 1'b0; end endgenerate sync_bits #( .NUM_OF_BITS(ID_WIDTH), .ASYNC_CLK(ASYNC_CLK_REQ_SRC) ) i_sync_src_request_id ( .out_clk(src_clk), .out_resetn(1'b1), .in(request_id), .out(src_request_id) ); sync_bits #( .NUM_OF_BITS(ID_WIDTH), .ASYNC_CLK(ASYNC_CLK_DEST_REQ) ) i_sync_req_response_id ( .out_clk(req_clk), .out_resetn(1'b1), .in(dest_response_id), .out(response_id) ); axi_register_slice #( .DATA_WIDTH(DMA_DATA_WIDTH_SRC + 1), .FORWARD_REGISTERED(AXI_SLICE_SRC), .BACKWARD_REGISTERED(AXI_SLICE_SRC) ) i_src_slice ( .clk(src_clk), .resetn(src_resetn), .s_axi_valid(src_valid), .s_axi_ready(src_ready), .s_axi_data({src_data,src_last}), .m_axi_valid(src_fifo_valid), .m_axi_ready(src_fifo_ready), .m_axi_data({src_fifo_data,src_fifo_last}) ); axi_dmac_burst_memory #( .DATA_WIDTH_SRC(DMA_DATA_WIDTH_SRC), .DATA_WIDTH_DEST(DMA_DATA_WIDTH_DEST), .ID_WIDTH(ID_WIDTH), .MAX_BYTES_PER_BURST(MAX_BYTES_PER_BURST), .ASYNC_CLK(ASYNC_CLK_SRC_DEST) ) i_store_and_forward ( .src_clk(src_clk), .src_reset(~src_resetn), .src_data_valid(src_fifo_valid), .src_data_ready(src_fifo_ready), .src_data(src_fifo_data), .src_data_last(src_fifo_last), .dest_clk(dest_clk), .dest_reset(~dest_resetn), .dest_data_valid(dest_fifo_valid), .dest_data_ready(dest_fifo_ready), .dest_data(dest_fifo_data), .dest_data_last(dest_fifo_last), .dest_request_id(dest_request_id), .dest_data_request_id(dest_data_request_id), .dest_data_response_id(dest_data_response_id) ); axi_register_slice #( .DATA_WIDTH(DMA_DATA_WIDTH_DEST + 1), .FORWARD_REGISTERED(AXI_SLICE_DEST), .BACKWARD_REGISTERED(AXI_SLICE_DEST) ) i_dest_slice ( .clk(dest_clk), .resetn(dest_resetn), .s_axi_valid(dest_fifo_valid), .s_axi_ready(dest_fifo_ready), .s_axi_data({ dest_fifo_last, dest_fifo_data }), .m_axi_valid(dest_valid), .m_axi_ready(dest_ready), .m_axi_data({ dest_last, dest_data }) ); splitter #( .NUM_M(3) ) i_req_splitter ( .clk(req_clk), .resetn(req_resetn), .s_valid(req_valid), .s_ready(req_ready), .m_valid({ req_gen_valid, req_dest_valid, req_src_valid }), .m_ready({ req_gen_ready, req_dest_ready, req_src_ready }) ); util_axis_fifo #( .DATA_WIDTH(DMA_ADDRESS_WIDTH_DEST + BEATS_PER_BURST_WIDTH_DEST + 1), .ADDRESS_WIDTH(0), .ASYNC_CLK(ASYNC_CLK_DEST_REQ) ) i_dest_req_fifo ( .s_axis_aclk(req_clk), .s_axis_aresetn(req_resetn), .s_axis_valid(req_dest_valid), .s_axis_ready(req_dest_ready), .s_axis_empty(), .s_axis_data({ req_dest_address, req_length[BYTES_PER_BURST_WIDTH-1:BYTES_PER_BEAT_WIDTH_DEST], req_xlast }), .s_axis_room(), .m_axis_aclk(dest_clk), .m_axis_aresetn(dest_resetn), .m_axis_valid(dest_req_valid), .m_axis_ready(dest_req_ready), .m_axis_data({ dest_req_address, dest_req_last_burst_length, dest_req_xlast }), .m_axis_level() ); util_axis_fifo #( .DATA_WIDTH(DMA_ADDRESS_WIDTH_SRC + BEATS_PER_BURST_WIDTH_SRC + 2), .ADDRESS_WIDTH(0), .ASYNC_CLK(ASYNC_CLK_REQ_SRC) ) i_src_req_fifo ( .s_axis_aclk(req_clk), .s_axis_aresetn(req_resetn), .s_axis_valid(req_src_valid), .s_axis_ready(req_src_ready), .s_axis_empty(), .s_axis_data({ req_src_address, req_length[BYTES_PER_BURST_WIDTH-1:BYTES_PER_BEAT_WIDTH_SRC], req_sync_transfer_start, req_xlast }), .s_axis_room(), .m_axis_aclk(src_clk), .m_axis_aresetn(src_resetn), .m_axis_valid(src_req_valid), .m_axis_ready(src_req_ready), .m_axis_data({ src_req_address, src_req_last_burst_length, src_req_sync_transfer_start, src_req_xlast }), .m_axis_level() ); util_axis_fifo #( .DATA_WIDTH(1), .ADDRESS_WIDTH(0), .ASYNC_CLK(ASYNC_CLK_DEST_REQ) ) i_dest_response_fifo ( .s_axis_aclk(dest_clk), .s_axis_aresetn(dest_resetn), .s_axis_valid(dest_response_valid), .s_axis_ready(dest_response_ready), .s_axis_empty(dest_response_empty), .s_axis_data(dest_response_resp_eot), .s_axis_room(), .m_axis_aclk(req_clk), .m_axis_aresetn(req_resetn), .m_axis_valid(response_dest_valid), .m_axis_ready(response_dest_ready), .m_axis_data(response_dest_resp_eot), .m_axis_level() ); /* Unused for now util_axis_fifo #( .DATA_WIDTH(2), .ADDRESS_WIDTH(0), .ASYNC_CLK(ASYNC_CLK_REQ_SRC) ) i_src_response_fifo ( .s_axis_aclk(src_clk), .s_axis_aresetn(src_resetn), .s_axis_valid(src_response_valid), .s_axis_ready(src_response_ready), .s_axis_empty(src_response_empty), .s_axis_data(src_response_resp), .m_axis_aclk(req_clk), .m_axis_aresetn(req_resetn), .m_axis_valid(response_src_valid), .m_axis_ready(response_src_ready), .m_axis_data(response_src_resp) ); assign src_response_empty = 1'b1; assign src_response_ready = 1'b1; */ dmac_request_generator #( .ID_WIDTH(ID_WIDTH), .BURSTS_PER_TRANSFER_WIDTH(BURSTS_PER_TRANSFER_WIDTH) ) i_req_gen ( .clk(req_clk), .resetn(req_resetn), .request_id(request_id), .response_id(response_id), .req_valid(req_gen_valid), .req_ready(req_gen_ready), .req_burst_count(req_length[DMA_LENGTH_WIDTH-1:BYTES_PER_BURST_WIDTH]), .enable(req_enable), .eot(request_eot) ); endmodule