// *************************************************************************** // *************************************************************************** // Copyright 2017(c) Analog Devices, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // - Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // - Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // - Neither the name of Analog Devices, Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // - The use of this software may or may not infringe the patent rights // of one or more patent holders. This license does not release you // from the requirement that you obtain separate licenses from these // patent holders to use this software. // - Use of the software either in source or binary form, must be run // on or directly connected to an Analog Devices Inc. component. // // THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, // INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE ARE DISCLAIMED. // // IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY // RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // *************************************************************************** // *************************************************************************** `timescale 1 ns / 1 ns module fir_decim #( parameter USE_DSP48E = 1 ) ( input clk, input clk_enable, input reset, input signed [11:0] filter_in, output reg signed [25:0] filter_out, output reg ce_out ); localparam signed [11:0] coeffphase1_1 = 12'b000011010101; //sfix12_En11 localparam signed [11:0] coeffphase1_2 = 12'b011011110010; //sfix12_En11 localparam signed [11:0] coeffphase1_3 = 12'b110000111110; //sfix12_En11 // We know that clk_enable is asserted at most every 5th clock cycle and the // output is decimated by two. So we have 10 clock cycles to compute the // result. That's plenty of time considering that there are only 6 // coefficients. reg active = 1'b0; reg active_d1 = 1'b0; reg active_d2 = 1'b0; reg [1:0] count = 2'b00; reg phase = 1'b1; reg ready = 1'b0; reg [3:0] storage0[0:11]; reg [3:0] storage1[0:11]; reg signed [11:0] data0; reg signed [11:0] data1; reg signed [11:0] coeff; wire signed [25:0] sum; integer j; initial begin for (j = 0; j < 12; j = j + 1) begin storage0[j] <= 'h00; storage1[j] <= 'h00; end end always @(posedge clk) begin if (reset == 1'b1) begin phase <= 1'b1; end else begin if (clk_enable == 1'b1) begin phase <= phase + 1'b1; end end end always @(posedge clk) begin if (clk_enable == 1'b1 && phase == 1'b1) begin active <= 1'b1; end else if (count == 'h2) begin active <= 1'b0; end active_d1 <= active; active_d2 <= active_d1; end always @(posedge clk) begin if (active == 1'b1) begin case (count) 'h2: count <= 'h0; default: count <= count + 1'b1; endcase end end always @(posedge clk) begin if (active_d1 == 1'b0 && active_d2 == 1'b1) begin ready <= 1'b1; end else begin ready <= 1'b0; end end generate genvar i; for (i = 0; i < 12; i = i + 1) begin always @(posedge clk) begin if (clk_enable == 1'b1) begin if (phase == 1'b0) begin storage0[i] <= {storage0[i][2:0],filter_in[i]}; end if (phase == 1'b1) begin storage1[i] <= {storage1[i][2:0],filter_in[i]}; end end end always @(*) begin data0[i] <= storage0[i][2-count]; data1[i] <= storage1[i][count]; end end endgenerate always @(*) begin case (count) 'h0: coeff <= coeffphase1_1; 'h1: coeff <= coeffphase1_2; 'h2: coeff <= coeffphase1_3; default: coeff <= 'h00; endcase end generate if (USE_DSP48E) begin wire [47:0] _sum; wire [6:0] opmode = {1'b0,active_d2,5'b00101}; // Can't exceed 26 bit. assign sum = _sum[43:18]; // MAC with pre-adder DSP48E1 #( .ACASCREG (0), .ADREG (1), .ALUMODEREG (0), .AREG (0), .AUTORESET_PATDET ("NO_RESET"), .A_INPUT ("DIRECT"), .BCASCREG (1), .BREG (1), .B_INPUT ("DIRECT"), .CARRYINREG (0), .CARRYINSELREG (0), .CREG (0), .DREG (0), .INMODEREG (0), .MASK (48'h3fffffffffff), .MREG (1), .OPMODEREG (1), .PATTERN (48'h000000000000), .PREG (1), .SEL_MASK ("MASK"), .SEL_PATTERN ("PATTERN"), .USE_DPORT ("TRUE"), .USE_MULT ("MULTIPLY"), .USE_PATTERN_DETECT ("NO_PATDET"), .USE_SIMD ("ONE48")) i_dsp_mac ( .CLK (clk), .A ({5'h0,data0[11],data0,12'h0}), // MSB aligned to 24-bit, 25th bit signed extended .B ({coeff,6'b0}), .C (48'h00), .D ({data1[11],data1,12'h0}), .MULTSIGNIN (1'b0), .CARRYIN (1'b0), .CARRYCASCIN (1'b0), .ACIN (30'h0), .BCIN (18'h0), .PCIN (48'h0), .P (_sum), .MULTSIGNOUT (), .CARRYOUT (), .CARRYCASCOUT (), .ACOUT (), .BCOUT (), .PCOUT (), .ALUMODE (4'b0000), .CARRYINSEL (3'h0), .INMODE (5'b00100), .OPMODE (opmode), .PATTERNBDETECT (), .PATTERNDETECT (), .OVERFLOW (), .UNDERFLOW (), .CEA1 (1'b0), .CEA2 (1'b0), .CEAD (active), .CEALUMODE (1'b0), .CEB1 (1'b0), .CEB2 (active), .CEC (1'b0), .CECARRYIN (1'b0), .CECTRL (active), .CED (1'b0), .CEINMODE (1'b0), .CEM (active_d1), .CEP (active_d2), .RSTA (1'b0), .RSTALLCARRYIN (1'b0), .RSTALUMODE (1'b0), .RSTB (1'b0), .RSTC (1'b0), .RSTCTRL (1'b0), .RSTD (1'b0), .RSTINMODE (1'b0), .RSTM (1'b0), .RSTP (1'b0) ); end else begin reg signed [25:0] _sum = 'h00; reg signed [12:0] pre_adder; reg signed [11:0] coeff_d1; reg signed [23:0] product = 'h00; assign sum = _sum; always @(posedge clk) begin if (active == 1'b1) begin pre_adder <= data0 + data1; coeff_d1 <= coeff; end if (active_d1 == 1'b1) begin product <= coeff_d1 * pre_adder; end if (reset == 1'b1 || ready == 1'b1) begin _sum <= 'h00; end else if (active_d2 == 1'b1) begin _sum <= _sum + product; end end end endgenerate always @(posedge clk) begin if (reset == 1'b1) begin ce_out <= 1'b0; end else begin ce_out <= ready; end end always @(posedge clk) begin if (ready == 1'b1) begin filter_out <= sum; end end endmodule