// *************************************************************************** // *************************************************************************** // Copyright 2016(c) Analog Devices, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // - Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // - Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // - Neither the name of Analog Devices, Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // - The use of this software may or may not infringe the patent rights // of one or more patent holders. This license does not release you // from the requirement that you obtain separate licenses from these // patent holders to use this software. // - Use of the software either in source or binary form, must be run // on or directly connected to an Analog Devices Inc. component. // // THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, // INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE ARE DISCLAIMED. // // IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY // RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // *************************************************************************** // *************************************************************************** // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module axi_dacfifo #( parameter DAC_DATA_WIDTH = 64, parameter DMA_DATA_WIDTH = 64, parameter AXI_DATA_WIDTH = 512, parameter AXI_SIZE = 2, parameter AXI_LENGTH = 15, parameter AXI_ADDRESS = 32'h00000000, parameter AXI_ADDRESS_LIMIT = 32'hffffffff) ( // dma interface (AXI Stream) input dma_clk, input dma_rst, input dma_valid, input [(DMA_DATA_WIDTH-1):0] dma_data, output reg dma_ready, input dma_xfer_req, input dma_xfer_last, // dac interface input dac_clk, input dac_rst, input dac_valid, output reg [(DAC_DATA_WIDTH-1):0] dac_data, output reg dac_dunf, output reg dac_xfer_out, input bypass, // axi interface input axi_clk, input axi_resetn, output axi_awvalid, output [ 3:0] axi_awid, output [ 1:0] axi_awburst, output axi_awlock, output [ 3:0] axi_awcache, output [ 2:0] axi_awprot, output [ 3:0] axi_awqos, output [ 3:0] axi_awuser, output [ 7:0] axi_awlen, output [ 2:0] axi_awsize, output [ 31:0] axi_awaddr, input axi_awready, output axi_wvalid, output [(AXI_DATA_WIDTH-1):0] axi_wdata, output [(AXI_DATA_WIDTH/8-1):0] axi_wstrb, output axi_wlast, output [ 3:0] axi_wuser, input axi_wready, input axi_bvalid, input [ 3:0] axi_bid, input [ 1:0] axi_bresp, input [ 3:0] axi_buser, output axi_bready, output axi_arvalid, output [ 3:0] axi_arid, output [ 1:0] axi_arburst, output axi_arlock, output [ 3:0] axi_arcache, output [ 2:0] axi_arprot, output [ 3:0] axi_arqos, output [ 3:0] axi_aruser, output [ 7:0] axi_arlen, output [ 2:0] axi_arsize, output [ 31:0] axi_araddr, input axi_arready, input axi_rvalid, input [ 3:0] axi_rid, input [ 3:0] axi_ruser, input [ 1:0] axi_rresp, input axi_rlast, input [(AXI_DATA_WIDTH-1):0] axi_rdata, output axi_rready); localparam FIFO_BYPASS = (DAC_DATA_WIDTH == DMA_DATA_WIDTH) ? 1 : 0; reg dma_bypass_m1 = 1'b0; reg dma_bypass = 1'b0; reg dac_bypass_m1 = 1'b0; reg dac_bypass = 1'b0; reg dac_xfer_out_m1 = 1'b0; reg dac_xfer_out_bypass = 1'b0; // internal signals wire [(AXI_DATA_WIDTH-1):0] axi_rd_data_s; wire axi_rd_ready_s; wire axi_rd_valid_s; wire axi_xfer_req_s; wire [31:0] axi_last_addr_s; wire [ 3:0] axi_last_beats_s; wire axi_dlast_s; wire [ 3:0] dma_last_beats_s; wire [(DAC_DATA_WIDTH-1):0] dac_data_fifo_s; wire [(DAC_DATA_WIDTH-1):0] dac_data_bypass_s; wire dac_xfer_fifo_out_s; wire dac_dunf_fifo_s; wire dac_dunf_bypass_s; wire dma_ready_wr_s; axi_dacfifo_wr #( .AXI_DATA_WIDTH (AXI_DATA_WIDTH), .DMA_DATA_WIDTH (DMA_DATA_WIDTH), .AXI_SIZE (AXI_SIZE), .AXI_LENGTH (AXI_LENGTH), .AXI_ADDRESS (AXI_ADDRESS), .AXI_ADDRESS_LIMIT (AXI_ADDRESS_LIMIT) ) i_wr ( .dma_clk (dma_clk), .dma_data (dma_data), .dma_ready (dma_ready), .dma_ready_out (dma_ready_wr_s), .dma_valid (dma_valid), .dma_xfer_req (dma_xfer_req), .dma_xfer_last (dma_xfer_last), .dma_last_beats (dma_last_beats_s), .axi_last_addr (axi_last_addr_s), .axi_last_beats (axi_last_beats_s), .axi_xfer_out (axi_xfer_req_s), .axi_clk (axi_clk), .axi_resetn (axi_resetn), .axi_awvalid (axi_awvalid), .axi_awid (axi_awid), .axi_awburst (axi_awburst), .axi_awlock (axi_awlock), .axi_awcache (axi_awcache), .axi_awprot (axi_awprot), .axi_awqos (axi_awqos), .axi_awuser (axi_awuser), .axi_awlen (axi_awlen), .axi_awsize (axi_awsize), .axi_awaddr (axi_awaddr), .axi_awready (axi_awready), .axi_wvalid (axi_wvalid), .axi_wdata (axi_wdata), .axi_wstrb (axi_wstrb), .axi_wlast (axi_wlast), .axi_wuser (axi_wuser), .axi_wready (axi_wready), .axi_bvalid (axi_bvalid), .axi_bid (axi_bid), .axi_bresp (axi_bresp), .axi_buser (axi_buser), .axi_bready (axi_bready), .axi_werror (axi_werror)); axi_dacfifo_rd #( .AXI_DATA_WIDTH (AXI_DATA_WIDTH), .AXI_SIZE (AXI_SIZE), .AXI_LENGTH (AXI_LENGTH), .AXI_ADDRESS (AXI_ADDRESS) ) i_rd ( .axi_xfer_req (axi_xfer_req_s), .axi_last_raddr (axi_last_addr_s), .axi_last_beats (axi_last_beats_s), .axi_clk (axi_clk), .axi_resetn (axi_resetn), .axi_arvalid (axi_arvalid), .axi_arid (axi_arid), .axi_arburst (axi_arburst), .axi_arlock (axi_arlock), .axi_arcache (axi_arcache), .axi_arprot (axi_arprot), .axi_arqos (axi_arqos), .axi_aruser (axi_aruser), .axi_arlen (axi_arlen), .axi_arsize (axi_arsize), .axi_araddr (axi_araddr), .axi_arready (axi_arready), .axi_rvalid (axi_rvalid), .axi_rid (axi_rid), .axi_ruser (axi_ruser), .axi_rresp (axi_rresp), .axi_rlast (axi_rlast), .axi_rdata (axi_rdata), .axi_rready (axi_rready), .axi_rerror (axi_rerror), .axi_dvalid (axi_rd_valid_s), .axi_ddata (axi_rd_data_s), .axi_dready (axi_rd_ready_s), .axi_dlast (axi_dlast_s)); axi_dacfifo_dac #( .AXI_DATA_WIDTH (AXI_DATA_WIDTH), .AXI_LENGTH(AXI_LENGTH), .DAC_DATA_WIDTH (DAC_DATA_WIDTH) ) i_dac ( .axi_clk (axi_clk), .axi_dvalid (axi_rd_valid_s), .axi_ddata (axi_rd_data_s), .axi_dready (axi_rd_ready_s), .axi_dlast (axi_dlast_s), .axi_xfer_req (axi_xfer_req_s), .dma_last_beats (dma_last_beats_s), .dac_clk (dac_clk), .dac_rst (dac_rst), .dac_valid (dac_valid), .dac_data (dac_data_fifo_s), .dac_xfer_out (dac_xfer_fifo_out_s), .dac_dunf (dac_dunf_fifo_s)); // bypass logic -- supported if DAC_DATA_WIDTH == DMA_DATA_WIDTH generate if (FIFO_BYPASS) begin util_dacfifo_bypass #( .DAC_DATA_WIDTH (DAC_DATA_WIDTH), .DMA_DATA_WIDTH (DMA_DATA_WIDTH) ) i_dacfifo_bypass ( .dma_clk(dma_clk), .dma_data(dma_data), .dma_ready(dma_ready), .dma_ready_out(dma_ready_bypass_s), .dma_valid(dma_valid), .dma_xfer_req(dma_xfer_req), .dac_clk(dac_clk), .dac_rst(dac_rst), .dac_valid(dac_valid), .dac_data(dac_data_bypass_s), .dac_dunf(dac_dunf_bypass_s) ); always @(posedge dma_clk) begin dma_bypass_m1 <= bypass; dma_bypass <= dma_bypass_m1; end always @(posedge dac_clk) begin dac_bypass_m1 <= bypass; dac_bypass <= dac_bypass_m1; dac_xfer_out_m1 <= dma_xfer_req; dac_xfer_out_bypass <= dac_xfer_out_m1; end // mux for the dma_ready always @(posedge dma_clk) begin dma_ready <= (dma_bypass) ? dma_ready_wr_s : dma_ready_bypass_s; end // mux for dac data always @(posedge dac_clk) begin if (dac_valid) begin dac_data <= (dac_bypass) ? dac_data_bypass_s : dac_data_fifo_s; end dac_xfer_out <= (dac_bypass) ? dac_xfer_out_bypass : dac_xfer_fifo_out_s; dac_dunf <= (dac_bypass) ? dac_dunf_bypass_s : dac_dunf_fifo_s; end end else begin /* if (~FIFO_BYPASS) */ always @(posedge dma_clk) begin dma_ready <= dma_ready_wr_s; end always @(posedge dac_clk) begin if (dac_valid) begin dac_data <= dac_data_fifo_s; end dac_xfer_out <= dac_xfer_fifo_out_s; dac_dunf <= dac_dunf_fifo_s; end end endgenerate endmodule