// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory of // the repository (LICENSE_GPL2), and at: // // OR // // 2. An ADI specific BSD license as noted in the top level directory, or on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** // Color Space Conversion, adder. This is a simple adder, but had to be // pipe-lined for faster clock rates. The delay input is delay-matched to // the sum pipe-line stages `timescale 1ps/1ps module ad_csc_1_add #( parameter DELAY_DATA_WIDTH = 16) ( // all signed input clk, input [24:0] data_1, input [24:0] data_2, input [24:0] data_3, input [24:0] data_4, output reg [ 7:0] data_p, // delay match input [DW:0] ddata_in, output reg [DW:0] ddata_out); localparam DW = DELAY_DATA_WIDTH - 1; // internal registers reg [DW:0] p1_ddata = 'd0; reg [24:0] p1_data_1 = 'd0; reg [24:0] p1_data_2 = 'd0; reg [24:0] p1_data_3 = 'd0; reg [24:0] p1_data_4 = 'd0; reg [DW:0] p2_ddata = 'd0; reg [24:0] p2_data_0 = 'd0; reg [24:0] p2_data_1 = 'd0; reg [DW:0] p3_ddata = 'd0; reg [24:0] p3_data = 'd0; // internal signals wire [24:0] p1_data_1_p_s; wire [24:0] p1_data_1_n_s; wire [24:0] p1_data_1_s; wire [24:0] p1_data_2_p_s; wire [24:0] p1_data_2_n_s; wire [24:0] p1_data_2_s; wire [24:0] p1_data_3_p_s; wire [24:0] p1_data_3_n_s; wire [24:0] p1_data_3_s; wire [24:0] p1_data_4_p_s; wire [24:0] p1_data_4_n_s; wire [24:0] p1_data_4_s; // pipe line stage 1, get the two's complement versions assign p1_data_1_p_s = {1'b0, data_1[23:0]}; assign p1_data_1_n_s = ~p1_data_1_p_s + 1'b1; assign p1_data_1_s = (data_1[24] == 1'b1) ? p1_data_1_n_s : p1_data_1_p_s; assign p1_data_2_p_s = {1'b0, data_2[23:0]}; assign p1_data_2_n_s = ~p1_data_2_p_s + 1'b1; assign p1_data_2_s = (data_2[24] == 1'b1) ? p1_data_2_n_s : p1_data_2_p_s; assign p1_data_3_p_s = {1'b0, data_3[23:0]}; assign p1_data_3_n_s = ~p1_data_3_p_s + 1'b1; assign p1_data_3_s = (data_3[24] == 1'b1) ? p1_data_3_n_s : p1_data_3_p_s; assign p1_data_4_p_s = {1'b0, data_4[23:0]}; assign p1_data_4_n_s = ~p1_data_4_p_s + 1'b1; assign p1_data_4_s = (data_4[24] == 1'b1) ? p1_data_4_n_s : p1_data_4_p_s; always @(posedge clk) begin p1_ddata <= ddata_in; p1_data_1 <= p1_data_1_s; p1_data_2 <= p1_data_2_s; p1_data_3 <= p1_data_3_s; p1_data_4 <= p1_data_4_s; end // pipe line stage 2, get the sum (intermediate, 4->2) always @(posedge clk) begin p2_ddata <= p1_ddata; p2_data_0 <= p1_data_1 + p1_data_2; p2_data_1 <= p1_data_3 + p1_data_4; end // pipe line stage 3, get the sum (final, 2->1) always @(posedge clk) begin p3_ddata <= p2_ddata; p3_data <= p2_data_0 + p2_data_1; end // output registers, output is unsigned (0 if sum is < 0) and saturated. // the inputs are expected to be 1.4.20 format (output is 8bits). always @(posedge clk) begin ddata_out <= p3_ddata; if (p3_data[24] == 1'b1) begin data_p <= 8'h00; end else if (p3_data[23:20] == 'd0) begin data_p <= p3_data[19:12]; end else begin data_p <= 8'hff; end end endmodule // *************************************************************************** // ***************************************************************************