// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // Each core or library found in this collection may have its own licensing terms. // The user should keep this in in mind while exploring these cores. // // Redistribution and use in source and binary forms, // with or without modification of this file, are permitted under the terms of either // (at the option of the user): // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory, or at: // https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html // // OR // // 2. An ADI specific BSD license as noted in the top level directory, or on-line at: // https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module util_upack_dsf #( parameter NUM_OF_CHANNELS_P = 4, parameter NUM_OF_CHANNELS_M = 8, parameter CHANNEL_DATA_WIDTH = 32, parameter NUM_OF_CHANNELS_O = 4) ( // dac interface input dac_clk, input dac_valid, input [(P_WIDTH-1):0] dac_data, // dmx interface input dac_dmx_enable, output reg dac_dsf_valid, output reg dac_dsf_sync, output reg [(M_WIDTH-1):0] dac_dsf_data); localparam CH_SCNT = CHANNEL_DATA_WIDTH/16; localparam P_WIDTH = CHANNEL_DATA_WIDTH*NUM_OF_CHANNELS_P; localparam M_WIDTH = CHANNEL_DATA_WIDTH*NUM_OF_CHANNELS_M; localparam O_WIDTH = CHANNEL_DATA_WIDTH*NUM_OF_CHANNELS_O; localparam E_WIDTH = CHANNEL_DATA_WIDTH*(NUM_OF_CHANNELS_M+1); localparam CH_DCNT = NUM_OF_CHANNELS_P - NUM_OF_CHANNELS_O; // internal registers reg dac_dmx_valid = 'd0; reg [ 2:0] dac_samples_int = 'd0; reg dac_dmx_valid_d = 'd0; reg dac_dsf_valid_d = 'd0; reg [ 2:0] dac_samples_int_d = 'd0; reg [(M_WIDTH-1):0] dac_data_int = 'd0; reg [(M_WIDTH-1):0] dac_dsf_data_int = 'd0; reg dac_valid_d1 = 'd0; // internal signals wire [ 2:0] dac_samples_int_s; wire [(E_WIDTH-1):0] dac_data_s; wire [(E_WIDTH-1):0] dac_data_int_0_s; wire [(E_WIDTH-1):0] dac_data_int_1_s; wire [M_WIDTH:0] dac_dsf_data_s; // bypass genvar i; generate if (NUM_OF_CHANNELS_O == NUM_OF_CHANNELS_P) begin for (i = 0; i < CH_SCNT ; i = i +1) begin: g_dsf_data assign dac_dsf_data_s[(((i +1) * NUM_OF_CHANNELS_M * 16)-1):(i*NUM_OF_CHANNELS_M*16)] = dac_data[(((i+1)*16*NUM_OF_CHANNELS_P)-1): (i*16*NUM_OF_CHANNELS_P)]; end end endgenerate generate if (NUM_OF_CHANNELS_O == NUM_OF_CHANNELS_P) begin assign dac_samples_int_s = 'd0; assign dac_data_s = 'd0; assign dac_data_int_0_s = 'd0; assign dac_data_int_1_s = 'd0; always @(posedge dac_clk) begin dac_dmx_valid <= dac_valid & dac_dmx_enable; dac_dsf_valid <= dac_valid & dac_dmx_enable; dac_dsf_sync <= dac_valid & dac_dmx_enable; dac_samples_int <= 'd0; dac_dmx_valid_d <= 'd0; dac_dsf_valid_d <= 'd0; dac_samples_int_d <= 'd0; dac_data_int <= 'd0; dac_dsf_data_int <= 'd0; if (dac_dmx_enable == 1'b1) begin dac_dsf_data <= dac_dsf_data_s[(M_WIDTH-1):0]; end else begin dac_dsf_data <= 'd0; end end end endgenerate // data store & forward generate if (NUM_OF_CHANNELS_P > NUM_OF_CHANNELS_O) begin assign dac_samples_int_s = (dac_dsf_valid == 1'b1) ? (dac_samples_int + CH_DCNT) : ((dac_samples_int >= NUM_OF_CHANNELS_O) ? (dac_samples_int - NUM_OF_CHANNELS_O) : dac_samples_int); always @(posedge dac_clk) begin dac_dmx_valid <= dac_valid & dac_dmx_enable; dac_valid_d1 <= dac_valid; if (dac_valid_d1 == 1'b1) begin if (dac_samples_int_s < NUM_OF_CHANNELS_O) begin dac_dsf_valid <= dac_valid & dac_dmx_enable; end else begin dac_dsf_valid <= 1'b0; end if (dac_samples_int_s == 0) begin dac_dsf_sync <= dac_valid & dac_dmx_enable; end else begin dac_dsf_sync <= 1'b0; end end else begin if (dac_samples_int < NUM_OF_CHANNELS_O) begin dac_dsf_valid <= dac_valid & dac_dmx_enable; end else begin dac_dsf_valid <= 1'b0; end if (dac_samples_int == 0) begin dac_dsf_sync <= dac_valid & dac_dmx_enable; end else begin dac_dsf_sync <= 1'b0; end end if (dac_dmx_valid == 1'b1) begin dac_samples_int <= dac_samples_int_s; end end assign dac_data_s[(E_WIDTH-1):P_WIDTH] = 'd0; assign dac_data_s[(P_WIDTH-1):0] = dac_data; assign dac_data_int_0_s[(E_WIDTH-1):(E_WIDTH-P_WIDTH)] = dac_data; assign dac_data_int_0_s[((E_WIDTH-P_WIDTH)-1):0] = dac_data_int[(M_WIDTH-1):(M_WIDTH-(E_WIDTH-P_WIDTH))]; assign dac_data_int_1_s[(E_WIDTH-1):(E_WIDTH-(M_WIDTH-O_WIDTH))] = dac_data_int[(M_WIDTH-1):O_WIDTH]; assign dac_data_int_1_s[((E_WIDTH-(M_WIDTH-O_WIDTH))-1):0] = 'd0; always @(posedge dac_clk) begin dac_dmx_valid_d <= dac_dmx_valid; dac_dsf_valid_d <= dac_dsf_valid; dac_samples_int_d <= dac_samples_int; if (dac_dsf_valid_d == 1'b1) begin dac_data_int <= dac_data_int_0_s[(E_WIDTH-1):(E_WIDTH-M_WIDTH)]; end else if (dac_dmx_valid_d == 1'b1) begin dac_data_int <= dac_data_int_1_s[(E_WIDTH-1):(E_WIDTH-M_WIDTH)]; end end always @(posedge dac_clk) begin if (dac_dmx_valid_d == 1'b1) begin case (dac_samples_int_d) 3'b111: dac_dsf_data_int <= { dac_data_s[((CHANNEL_DATA_WIDTH*1)-1):0], dac_data_int[((CHANNEL_DATA_WIDTH*8)-1):(CHANNEL_DATA_WIDTH*1)]}; 3'b110: dac_dsf_data_int <= { dac_data_s[((CHANNEL_DATA_WIDTH*2)-1):0], dac_data_int[((CHANNEL_DATA_WIDTH*8)-1):(CHANNEL_DATA_WIDTH*2)]}; 3'b101: dac_dsf_data_int <= { dac_data_s[((CHANNEL_DATA_WIDTH*3)-1):0], dac_data_int[((CHANNEL_DATA_WIDTH*8)-1):(CHANNEL_DATA_WIDTH*3)]}; 3'b100: dac_dsf_data_int <= { dac_data_s[((CHANNEL_DATA_WIDTH*4)-1):0], dac_data_int[((CHANNEL_DATA_WIDTH*8)-1):(CHANNEL_DATA_WIDTH*4)]}; 3'b011: dac_dsf_data_int <= { dac_data_s[((CHANNEL_DATA_WIDTH*5)-1):0], dac_data_int[((CHANNEL_DATA_WIDTH*8)-1):(CHANNEL_DATA_WIDTH*5)]}; 3'b010: dac_dsf_data_int <= { dac_data_s[((CHANNEL_DATA_WIDTH*6)-1):0], dac_data_int[((CHANNEL_DATA_WIDTH*8)-1):(CHANNEL_DATA_WIDTH*6)]}; 3'b001: dac_dsf_data_int <= { dac_data_s[((CHANNEL_DATA_WIDTH*7)-1):0], dac_data_int[((CHANNEL_DATA_WIDTH*8)-1):(CHANNEL_DATA_WIDTH*7)]}; 3'b000: dac_dsf_data_int <= dac_data_s; default: dac_dsf_data_int <= 'd0; endcase end end end endgenerate genvar n; generate if (NUM_OF_CHANNELS_P > NUM_OF_CHANNELS_O) begin assign dac_dsf_data_s[M_WIDTH] = 'd0; for (n = 0; n < CH_SCNT; n = n + 1) begin: g_out assign dac_dsf_data_s[(((n+1)*NUM_OF_CHANNELS_M*16)-1):(((n*NUM_OF_CHANNELS_M)+NUM_OF_CHANNELS_O)*16)] = 'd0; assign dac_dsf_data_s[((((n*NUM_OF_CHANNELS_M)+NUM_OF_CHANNELS_O)*16)-1):(n*NUM_OF_CHANNELS_M*16)] = dac_dsf_data_int[(((n+1)*NUM_OF_CHANNELS_O*16)-1):(n*NUM_OF_CHANNELS_O*16)]; end end endgenerate generate if (NUM_OF_CHANNELS_P > NUM_OF_CHANNELS_O) begin always @(posedge dac_clk) begin if (dac_dmx_enable == 1'b1) begin dac_dsf_data <= dac_dsf_data_s[(M_WIDTH-1):0]; end else begin dac_dsf_data <= 'd0; end end end endgenerate endmodule // *************************************************************************** // ***************************************************************************