// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2019 (c) Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns / 1ps module axi_fan_control #( parameter ID = 0, parameter PWM_FREQUENCY_HZ = 5000, //temperature thresholds defined to match sysmon reg values parameter THRESH_PWM_000 = 16'h8f5e, //TEMP_05 parameter THRESH_PWM_025_L = 16'h96f0, //TEMP_20 parameter THRESH_PWM_025_H = 16'ha0ff, //TEMP_40 parameter THRESH_PWM_050_L = 16'hab03, //TEMP_60 parameter THRESH_PWM_050_H = 16'hb00a, //TEMP_70 parameter THRESH_PWM_075_L = 16'hb510, //TEMP_80 parameter THRESH_PWM_075_H = 16'hba17, //TEMP_90 parameter THRESH_PWM_100 = 16'hbc9b) ( //TEMP_95 input tacho, output reg irq, output pwm, //axi interface input s_axi_aclk, input s_axi_aresetn, input s_axi_awvalid, input [15:0] s_axi_awaddr, input [ 2:0] s_axi_awprot, output s_axi_awready, input s_axi_wvalid, input [31:0] s_axi_wdata, input [ 3:0] s_axi_wstrb, output s_axi_wready, output s_axi_bvalid, output [ 1:0] s_axi_bresp, input s_axi_bready, input s_axi_arvalid, input [15:0] s_axi_araddr, input [ 2:0] s_axi_arprot, output s_axi_arready, output s_axi_rvalid, output [ 1:0] s_axi_rresp, output [31:0] s_axi_rdata, input s_axi_rready); //local parameters localparam [31:0] CORE_VERSION = {16'h0000, /* MAJOR */ 8'h01, /* MINOR */ 8'h00}; /* PATCH */ // 0.0.0 localparam [31:0] CORE_MAGIC = 32'h46414E43; // FANC localparam CLK_FREQUENCY = 100000000; localparam PWM_PERIOD = CLK_FREQUENCY / PWM_FREQUENCY_HZ; localparam OVERFLOW_LIM = CLK_FREQUENCY * 5; localparam AVERAGE_DIV = 128; //pwm params localparam PWM_ONTIME_25 = PWM_PERIOD / 4; localparam PWM_ONTIME_50 = PWM_PERIOD / 2; localparam PWM_ONTIME_75 = PWM_PERIOD * 3 / 4; //tacho params localparam TACHO_TOL_PERCENT = 25; localparam TACHO_T25 = 3200000; // 32 ms localparam TACHO_T50 = 1280000; // 12.8 ms localparam TACHO_T75 = 720000; // 7.2 ms localparam TACHO_T100 = 640000; localparam TACHO_T25_TOL = TACHO_T25 * TACHO_TOL_PERCENT / 100; localparam TACHO_T50_TOL = TACHO_T50 * TACHO_TOL_PERCENT / 100; localparam TACHO_T75_TOL = TACHO_T75 * TACHO_TOL_PERCENT / 100; localparam TACHO_T100_TOL = TACHO_T100 * TACHO_TOL_PERCENT / 100; //state machine states localparam INIT = 8'h00; localparam DRP_WAIT_EOC = 8'h01; localparam DRP_WAIT_DRDY = 8'h02; localparam DRP_READ_TEMP = 8'h03; localparam DRP_READ_TEMP_WAIT_DRDY = 8'h04; localparam GET_TACHO = 8'h05; localparam EVAL_TEMP = 8'h06; localparam EVAL_PWM = 8'h07; localparam SET_PWM = 8'h08; localparam EVAL_TACHO = 8'h09; reg [31:0] up_scratch = 'd0; reg [7:0] state = INIT; reg [7:0] drp_daddr = 'h0; reg [15:0] drp_di = 'h0; reg [1:0] drp_den_reg = 'h0; reg [1:0] drp_dwe_reg = 'h0; reg [15:0] sysmone_temp = 'h0; reg temp_increase_alarm = 'h0; reg tacho_alarm = 'h0; reg [31:0] up_tacho_val = 'h0; reg [31:0] up_tacho_tol = 'h0; reg up_tacho_en = 'h0; reg [7:0] tacho_avg_cnt = 'h0; reg [31:0] tacho_avg_sum = 'h0; reg [31:0] tacho_meas = 'h0; reg tacho_delayed = 'h0; reg tacho_meas_new = 'h0; reg tacho_meas_ack = 'h0; reg tacho_edge_det = 'h0; reg [31:0] up_tacho_avg_sum = 'h0; reg [31:0] counter_reg = 'h0; reg [31:0] pwm_width = 'h0; reg [31:0] pwm_width_req = 'h0; reg counter_overflow = 'h0; reg pwm_change_done = 1'b1; reg pulse_gen_load_config = 'h0; reg tacho_meas_int = 'h0; reg [31:0] up_pwm_width = 'd0; reg up_wack = 'd0; reg [31:0] up_rdata = 'd0; reg up_rack = 'd0; reg up_resetn = 1'b1; reg [3:0] up_irq_mask = 4'b1111; reg [3:0] up_irq_source = 4'h0; wire counter_resetn; wire [15:0] drp_do; wire drp_drdy; wire drp_eoc; wire drp_eos; wire pwm_change_done_int; wire pulse_gen_out; wire up_clk; wire up_rreq_s; wire [7:0] up_raddr_s; wire up_wreq_s; wire [7:0] up_waddr_s; wire [31:0] up_wdata_s; wire [3:0] up_irq_pending; wire [3:0] up_irq_trigger; wire [3:0] up_irq_source_clear; assign up_clk = s_axi_aclk; assign pwm = ~pulse_gen_out & up_resetn; //reverse polarity because the board is also reversing it assign pwm_change_done_int = counter_overflow & !pwm_change_done; //IRQ handling assign up_irq_pending = ~up_irq_mask & up_irq_source; assign up_irq_trigger = {tacho_meas_int, temp_increase_alarm, tacho_alarm, pwm_change_done_int}; assign up_irq_source_clear = (up_wreq_s == 1'b1 && up_waddr_s == 8'h11) ? up_wdata_s[3:0] : 4'b0000; //switching the reset signal for the counter //counter is used to measure tacho and to provide delay between pwm_ontime changes assign counter_resetn = (pwm_change_done ) ? (!tacho_edge_det) : ((!pwm_change_done) & (!counter_overflow)); up_axi #( .ADDRESS_WIDTH(8)) i_up_axi ( .up_rstn (s_axi_aresetn), .up_clk (up_clk), .up_axi_awvalid (s_axi_awvalid), .up_axi_awaddr (s_axi_awaddr), .up_axi_awready (s_axi_awready), .up_axi_wvalid (s_axi_wvalid), .up_axi_wdata (s_axi_wdata), .up_axi_wstrb (s_axi_wstrb), .up_axi_wready (s_axi_wready), .up_axi_bvalid (s_axi_bvalid), .up_axi_bresp (s_axi_bresp), .up_axi_bready (s_axi_bready), .up_axi_arvalid (s_axi_arvalid), .up_axi_araddr (s_axi_araddr), .up_axi_arready (s_axi_arready), .up_axi_rvalid (s_axi_rvalid), .up_axi_rresp (s_axi_rresp), .up_axi_rdata (s_axi_rdata), .up_axi_rready (s_axi_rready), .up_wreq (up_wreq_s), .up_waddr (up_waddr_s), .up_wdata (up_wdata_s), .up_wack (up_wack), .up_rreq (up_rreq_s), .up_raddr (up_raddr_s), .up_rdata (up_rdata), .up_rack (up_rack)); SYSMONE4 #( .COMMON_N_SOURCE(16'hFFFF), .INIT_40(16'h1000), // config reg 0 .INIT_41(16'h2F9F), // config reg 1 .INIT_42(16'h1400), // config reg 2 .INIT_43(16'h200F), // config reg 3 .INIT_44(16'h0000), // config reg 4 .INIT_45(16'hE200), // Analog Bus Register .INIT_46(16'h0000), // Sequencer Channel selection (Vuser0-3) .INIT_47(16'h0000), // Sequencer Average selection (Vuser0-3) .INIT_48(16'h0101), // Sequencer channel selection .INIT_49(16'h0000), // Sequencer channel selection .INIT_4A(16'h0000), // Sequencer Average selection .INIT_4B(16'h0000), // Sequencer Average selection .INIT_4C(16'h0000), // Sequencer Bipolar selection .INIT_4D(16'h0000), // Sequencer Bipolar selection .INIT_4E(16'h0000), // Sequencer Acq time selection .INIT_4F(16'h0000), // Sequencer Acq time selection .INIT_50(16'hB794), // Temp alarm trigger .INIT_51(16'h4E81), // Vccint upper alarm limit .INIT_52(16'hA147), // Vccaux upper alarm limit .INIT_53(16'hBF13), // Temp alarm OT upper .INIT_54(16'hAB02), // Temp alarm reset .INIT_55(16'h4963), // Vccint lower alarm limit .INIT_56(16'h9555), // Vccaux lower alarm limit .INIT_57(16'hB00A), // Temp alarm OT reset .INIT_58(16'h4E81), // VCCBRAM upper alarm limit .INIT_5C(16'h4963), // VCCBRAM lower alarm limit .INIT_59(16'h4963), // vccpsintlp upper alarm limit .INIT_5D(16'h451E), // vccpsintlp lower alarm limit .INIT_5A(16'h4963), // vccpsintfp upper alarm limit .INIT_5E(16'h451E), // vccpsintfp lower alarm limit .INIT_5B(16'h9A74), // vccpsaux upper alarm limit .INIT_5F(16'h91EB), // vccpsaux lower alarm limit .INIT_60(16'h4D39), // Vuser0 upper alarm limit .INIT_61(16'h4DA7), // Vuser1 upper alarm limit .INIT_62(16'h9A74), // Vuser2 upper alarm limit .INIT_63(16'h9A74), // Vuser3 upper alarm limit .INIT_68(16'h4C5E), // Vuser0 lower alarm limit .INIT_69(16'h4BF2), // Vuser1 lower alarm limit .INIT_6A(16'h98BF), // Vuser2 lower alarm limit .INIT_6B(16'h98BF), // Vuser3 lower alarm limit .INIT_7A(16'h0000), // DUAL0 Register .INIT_7B(16'h0000), // DUAL1 Register .INIT_7C(16'h0000), // DUAL2 Register .INIT_7D(16'h0000), // DUAL3 Register .SIM_DEVICE("ZYNQ_ULTRASCALE"), .SIM_MONITOR_FILE("design.txt")) inst_sysmon ( .DADDR(drp_daddr), .DCLK(up_clk), .DEN(drp_den_reg[0]), .DI(drp_di), .DWE(drp_dwe_reg[0]), .RESET(!up_resetn), .DO(drp_do), .DRDY(drp_drdy), .EOC(drp_eoc), .EOS(drp_eos) ); //pulse generator instance util_pulse_gen #( .PULSE_WIDTH(0), .PULSE_PERIOD(0)) util_pulse_gen_i( .clk (up_clk), .rstn (up_resetn), .pulse_width (pwm_width), .pulse_period (PWM_PERIOD), .load_config (pulse_gen_load_config), .pulse (pulse_gen_out) ); //state machine always @(posedge up_clk) if (up_resetn == 1'b0) begin tacho_alarm <= 'h0; drp_den_reg <= 'h0; drp_dwe_reg <= 'h0; drp_di <= 'h0; tacho_avg_cnt <= 'h0; tacho_avg_sum <= 'h0; tacho_meas_ack <= 'h0; pulse_gen_load_config <= 'h0; sysmone_temp <= 'h0; pwm_width_req <= 'h0; pwm_width <= 'h0; up_tacho_avg_sum <= 'h0; temp_increase_alarm <= 'h0; tacho_meas_int <= 1'b0; state <= INIT; end else begin case (state) INIT : begin drp_daddr <= 8'h40; // performing read drp_den_reg <= 2'h2; if (drp_eoc == 1'b1) begin state <= DRP_WAIT_EOC; end end DRP_WAIT_EOC : begin if (drp_eoc == 1'b1) begin //Clearing AVG bits for Configreg0 drp_di <= drp_do & 16'h03FF; drp_daddr <= 8'h40; drp_den_reg <= 2'h2; // performing write drp_dwe_reg <= 2'h2; state <= DRP_WAIT_DRDY; end else begin drp_den_reg <= {1'b0, drp_den_reg[1]}; drp_dwe_reg <= {1'b0, drp_dwe_reg[1]}; end end DRP_WAIT_DRDY : begin if (drp_drdy == 1'b1) begin state <= DRP_READ_TEMP; end else begin drp_den_reg <= {1'b0, drp_den_reg[1]}; drp_dwe_reg <= {1'b0, drp_dwe_reg[1]}; end end DRP_READ_TEMP : begin tacho_alarm <= 1'b0; tacho_meas_int <= 1'b0; pulse_gen_load_config <= 1'b0; drp_daddr <= 8'h00; // performing read drp_den_reg <= 2'h2; if (drp_eos == 1'b1) begin state <= DRP_READ_TEMP_WAIT_DRDY; end end DRP_READ_TEMP_WAIT_DRDY : begin if (drp_drdy == 1'b1) begin sysmone_temp <= drp_do; state <= GET_TACHO; end else begin drp_den_reg <= {1'b0, drp_den_reg[1]}; drp_dwe_reg <= {1'b0, drp_dwe_reg[1]}; end end GET_TACHO : begin //adding up tacho measurements in order to obtain a mean value from 32 samples if ((tacho_avg_cnt == AVERAGE_DIV) || (counter_overflow) || (!pwm_change_done)) begin //once a set measurements has been obtained, reset the values tacho_avg_sum <= 1'b0; tacho_avg_cnt <= 1'b0; tacho_meas_ack <= 1'b0; end else if ((tacho_meas_new) && (pwm_change_done)) begin //tacho_meas_new and tacho_meas_ack ensure the value is read at the right time and only once tacho_avg_sum <= tacho_avg_sum + tacho_meas; tacho_avg_cnt <= tacho_avg_cnt + 1'b1; //acknowledge tha the current values has been added tacho_meas_ack <= 1'b1; end else begin tacho_meas_ack <= 1'b0; end state <= EVAL_TEMP; end EVAL_TEMP : begin //pwm section //the pwm only has to be changed when passing through these temperature intervals if (sysmone_temp < THRESH_PWM_000) begin //PWM DUTY should be 0% pwm_width_req <= 1'b0; end else if ((sysmone_temp > THRESH_PWM_025_L) && (sysmone_temp < THRESH_PWM_025_H)) begin //PWM DUTY should be 25% pwm_width_req <= PWM_ONTIME_25; end else if ((sysmone_temp > THRESH_PWM_050_L) && (sysmone_temp < THRESH_PWM_050_H)) begin //PWM DUTY should be 50% pwm_width_req <= PWM_ONTIME_50; end else if ((sysmone_temp > THRESH_PWM_075_L) && (sysmone_temp < THRESH_PWM_075_H)) begin //PWM DUTY should be 75% pwm_width_req <= PWM_ONTIME_75; end else if (sysmone_temp > THRESH_PWM_100) begin //PWM DUTY should be 100% pwm_width_req <= PWM_PERIOD; //default to 100% duty cycle after reset if not within temperature intervals described above end else if ((sysmone_temp != 'h0) && (pwm_width == 'h0)) begin pwm_width_req <= PWM_PERIOD; end else begin //if no changes are needed make sure to mantain current pwm pwm_width_req <= pwm_width; end state <= EVAL_PWM; end EVAL_PWM : begin //setting alarm for temperature increase if (pwm_width_req > pwm_width) begin temp_increase_alarm <= 1'b1; end state <= SET_PWM; end SET_PWM : begin temp_increase_alarm <= 1'b0; if ((up_pwm_width != pwm_width) && (up_pwm_width >= pwm_width_req) && (up_pwm_width <= PWM_PERIOD) && (pwm_change_done)) begin pwm_width <= up_pwm_width; pulse_gen_load_config <= 1'b1; //clear alarm when pwm duty changes end else if ((pwm_width != pwm_width_req) && (pwm_width_req > up_pwm_width) && (pwm_change_done)) begin pwm_width <= pwm_width_req; pulse_gen_load_config <= 1'b1; //clear alarm when pwm duty changes end state <= EVAL_TACHO; end EVAL_TACHO : begin //tacho section //check if the fan is turning then see if it is turning correctly if(counter_overflow & pwm_change_done) begin //if overflow is 1 then the fan is not turning so do something tacho_alarm <= 1'b1; end else if (tacho_avg_cnt == AVERAGE_DIV) begin //check rpm according to the current pwm duty cycle //tacho_alarm is only asserted for certain known pwm duty cycles and //for timeout up_tacho_avg_sum <= tacho_avg_sum [31:7]; tacho_meas_int <= 1'b1; if ((pwm_width == PWM_ONTIME_25) && (up_tacho_en == 0)) begin if ((tacho_avg_sum [31:7] > TACHO_T25 + TACHO_T25_TOL) || (tacho_avg_sum [31:7] < TACHO_T25 - TACHO_T25_TOL)) begin //the fan is turning but not as expected tacho_alarm <= 1'b1; end end else if ((pwm_width == PWM_ONTIME_50) && (up_tacho_en == 0)) begin if ((tacho_avg_sum [31:7] > TACHO_T50 + TACHO_T50_TOL) || (tacho_avg_sum [31:7] < TACHO_T50 - TACHO_T50_TOL)) begin //the fan is turning but not as expected tacho_alarm <= 1'b1; end end else if ((pwm_width == PWM_ONTIME_75) && (up_tacho_en == 0)) begin if ((tacho_avg_sum [31:7] > TACHO_T75 + TACHO_T75_TOL) || (tacho_avg_sum [31:7] < TACHO_T75 - TACHO_T75_TOL)) begin //the fan is turning but not as expected tacho_alarm <= 1'b1; end end else if ((pwm_width == PWM_PERIOD) && (up_tacho_en == 0)) begin if ((tacho_avg_sum [31:7] > TACHO_T100 + TACHO_T100_TOL) || (tacho_avg_sum [31:7] < TACHO_T100 - TACHO_T100_TOL)) begin //the fan is turning but not as expected tacho_alarm <= 1'b1; end end else if ((pwm_width == up_pwm_width) && up_tacho_en) begin if ((tacho_avg_sum [31:7] > up_tacho_val + up_tacho_tol) || (tacho_avg_sum [31:7] < up_tacho_val - up_tacho_tol)) begin //the fan is turning but not as expected tacho_alarm <= 1'b1; end end end state <= DRP_READ_TEMP; end default : state <= DRP_READ_TEMP; endcase end //axi registers write always @(posedge up_clk) begin if (s_axi_aresetn == 1'b0) begin up_wack <= 'd0; up_pwm_width <= 'd0; up_tacho_val <= 'd0; up_tacho_tol <= 'd0; up_tacho_en <= 'd0; up_scratch <= 'd0; up_irq_mask <= 4'b1111; up_resetn <= 1'd0; end else begin up_wack <= up_wreq_s; if ((up_wreq_s == 1'b1) && (up_waddr_s == 8'h20)) begin up_resetn <= up_wdata_s[0]; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 8'h02)) begin up_scratch <= up_wdata_s; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 8'h21)) begin up_pwm_width <= up_wdata_s; up_tacho_en <= 1'b0; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 8'h22)) begin up_tacho_val <= up_wdata_s; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 8'h23)) begin up_tacho_tol <= up_wdata_s; up_tacho_en <= 1'b1; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 8'h10)) begin up_irq_mask <= up_wdata_s[3:0]; end end end //axi registers read always @(posedge up_clk) begin if (s_axi_aresetn == 1'b0) begin up_rack <= 'd0; up_rdata <= 'd0; end else begin up_rack <= up_rreq_s; if (up_rreq_s == 1'b1) begin case (up_raddr_s) 8'h00: up_rdata <= CORE_VERSION; 8'h01: up_rdata <= ID; 8'h02: up_rdata <= up_scratch; 8'h03: up_rdata <= CORE_MAGIC; 8'h20: up_rdata <= up_resetn; 8'h21: up_rdata <= pwm_width; 8'h30: up_rdata <= PWM_PERIOD; 8'h31: up_rdata <= up_tacho_avg_sum; 8'h32: up_rdata <= sysmone_temp; 8'h22: up_rdata <= up_tacho_val; 8'h23: up_rdata <= up_tacho_tol; 8'h10: up_rdata <= up_irq_mask; 8'h11: up_rdata <= up_irq_pending; 8'h12: up_rdata <= up_irq_source; default: up_rdata <= 0; endcase end else begin up_rdata <= 32'd0; end end end //IRQ handling always @(posedge up_clk) begin if (up_resetn == 1'b0) begin irq <= 1'b0; end else begin irq <= |up_irq_pending; end end always @(posedge up_clk) begin if (up_resetn == 1'b0) begin up_irq_source <= 4'b0000; end else begin up_irq_source <= up_irq_trigger | (up_irq_source & ~up_irq_source_clear); end end //tacho measurement logic always @(posedge up_clk) begin if (up_resetn == 1'b0) begin tacho_edge_det <= 'h0; tacho_meas <= 'h0; tacho_meas_new <= 'h0; tacho_delayed <= 'h0; end else begin //edge detection of tacho signal tacho_delayed <= tacho; tacho_edge_det <= tacho & ~tacho_delayed; if ((tacho_edge_det == 1'b1) && (pwm_change_done)) begin //measurement is recorded tacho_meas <= counter_reg; //signal indicates new measurement completed tacho_meas_new <= 1'b1; end else if(tacho_meas_ack == 1'b1) begin //acknowledge received from state machine //resetting new measurement flag tacho_meas_new <= 'h0; end end end //pwm change proc always @(posedge up_clk) begin if (up_resetn == 1'b0) begin pwm_change_done <= 1'b1; end else if (counter_overflow) begin pwm_change_done <= 1'b1; end else if (pulse_gen_load_config) begin pwm_change_done <= 'h0; end end //tacho measurement and pwm change delay counter always @(posedge up_clk) begin if ((up_resetn & counter_resetn) == 1'b0) begin counter_reg <= 'h0; counter_overflow <= 1'b0; end else begin if (counter_reg == OVERFLOW_LIM) begin counter_reg <= 'h0; counter_overflow <= 1'b1; end else begin counter_reg <= counter_reg + 1'b1; end end end endmodule