// *************************************************************************** // *************************************************************************** // Copyright 2011(c) Analog Devices, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // - Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // - Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // - Neither the name of Analog Devices, Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // - The use of this software may or may not infringe the patent rights // of one or more patent holders. This license does not release you // from the requirement that you obtain separate licenses from these // patent holders to use this software. // - Use of the software either in source or binary form, must be run // on or directly connected to an Analog Devices Inc. component. // // THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, // INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE ARE DISCLAIMED. // // IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY // RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module util_rfifo ( // d-in interface din_rstn, din_clk, din_enable_0, din_valid_0, din_data_0, din_enable_1, din_valid_1, din_data_1, din_enable_2, din_valid_2, din_data_2, din_enable_3, din_valid_3, din_data_3, din_enable_4, din_valid_4, din_data_4, din_enable_5, din_valid_5, din_data_5, din_enable_6, din_valid_6, din_data_6, din_enable_7, din_valid_7, din_data_7, din_unf, // d-out interface dout_rst, dout_clk, dout_enable_0, dout_valid_0, dout_data_0, dout_enable_1, dout_valid_1, dout_data_1, dout_enable_2, dout_valid_2, dout_data_2, dout_enable_3, dout_valid_3, dout_data_3, dout_enable_4, dout_valid_4, dout_data_4, dout_enable_5, dout_valid_5, dout_data_5, dout_enable_6, dout_valid_6, dout_data_6, dout_enable_7, dout_valid_7, dout_data_7, dout_unf); // parameters parameter NUM_OF_CHANNELS = 4; parameter DIN_DATA_WIDTH = 32; parameter DOUT_DATA_WIDTH = 64; parameter DIN_ADDRESS_WIDTH = 8; localparam M_MEM_RATIO = DOUT_DATA_WIDTH/DIN_DATA_WIDTH; localparam ADDRESS_WIDTH = (DIN_ADDRESS_WIDTH > 4) ? DIN_ADDRESS_WIDTH : 4; localparam DATA_WIDTH = DOUT_DATA_WIDTH * NUM_OF_CHANNELS; localparam T_DIN_DATA_WIDTH = DIN_DATA_WIDTH * 8; localparam T_DOUT_DATA_WIDTH = DOUT_DATA_WIDTH * 8; // d-in interface input din_rstn; input din_clk; output din_enable_0; output din_valid_0; input [DIN_DATA_WIDTH-1:0] din_data_0; output din_enable_1; output din_valid_1; input [DIN_DATA_WIDTH-1:0] din_data_1; output din_enable_2; output din_valid_2; input [DIN_DATA_WIDTH-1:0] din_data_2; output din_enable_3; output din_valid_3; input [DIN_DATA_WIDTH-1:0] din_data_3; output din_enable_4; output din_valid_4; input [DIN_DATA_WIDTH-1:0] din_data_4; output din_enable_5; output din_valid_5; input [DIN_DATA_WIDTH-1:0] din_data_5; output din_enable_6; output din_valid_6; input [DIN_DATA_WIDTH-1:0] din_data_6; output din_enable_7; output din_valid_7; input [DIN_DATA_WIDTH-1:0] din_data_7; input din_unf; // dout interface input dout_rst; input dout_clk; input dout_enable_0; input dout_valid_0; output [DOUT_DATA_WIDTH-1:0] dout_data_0; input dout_enable_1; input dout_valid_1; output [DOUT_DATA_WIDTH-1:0] dout_data_1; input dout_enable_2; input dout_valid_2; output [DOUT_DATA_WIDTH-1:0] dout_data_2; input dout_enable_3; input dout_valid_3; output [DOUT_DATA_WIDTH-1:0] dout_data_3; input dout_enable_4; input dout_valid_4; output [DOUT_DATA_WIDTH-1:0] dout_data_4; input dout_enable_5; input dout_valid_5; output [DOUT_DATA_WIDTH-1:0] dout_data_5; input dout_enable_6; input dout_valid_6; output [DOUT_DATA_WIDTH-1:0] dout_data_6; input dout_enable_7; input dout_valid_7; output [DOUT_DATA_WIDTH-1:0] dout_data_7; output dout_unf; // internal registers reg [(DATA_WIDTH-1):0] din_wdata = 'd0; reg [(ADDRESS_WIDTH-1):0] din_waddr = 'd0; reg din_wr = 'd0; reg [ 6:0] din_req_cnt = 'd0; reg [ 7:0] din_enable_m1 = 'd0; reg [ 7:0] din_enable = 'd0; reg din_req_t_m1 = 'd0; reg din_req_t_m2 = 'd0; reg din_req_t_m3 = 'd0; reg [(T_DOUT_DATA_WIDTH+1):0] dout_data = 'd0; reg [(DATA_WIDTH-1):0] dout_rdata = 'd0; reg [ 7:0] dout_enable = 'd0; reg dout_req_t = 'd0; reg [(ADDRESS_WIDTH-1):0] dout_raddr = 'd0; reg dout_unf_m1 = 'd0; reg dout_unf = 'd0; // internal signals wire [(T_DIN_DATA_WIDTH-1):0] din_data_s; wire din_req_s; wire [ 7:0] dout_enable_s; wire [ 7:0] dout_valid_s; wire [(T_DOUT_DATA_WIDTH+1):0] dout_data_s; wire [(DATA_WIDTH-1):0] dout_rdata_s; // variables genvar n; // enables & valids assign din_enable_7 = din_enable[7]; assign din_enable_6 = din_enable[6]; assign din_enable_5 = din_enable[5]; assign din_enable_4 = din_enable[4]; assign din_enable_3 = din_enable[3]; assign din_enable_2 = din_enable[2]; assign din_enable_1 = din_enable[1]; assign din_enable_0 = din_enable[0]; assign din_valid_7 = din_req_cnt[6]; assign din_valid_6 = din_req_cnt[6]; assign din_valid_5 = din_req_cnt[6]; assign din_valid_4 = din_req_cnt[6]; assign din_valid_3 = din_req_cnt[6]; assign din_valid_2 = din_req_cnt[6]; assign din_valid_1 = din_req_cnt[6]; assign din_valid_0 = din_req_cnt[6]; assign din_data_s = { din_data_7, din_data_6, din_data_5, din_data_4, din_data_3, din_data_2, din_data_1, din_data_0}; // simple data transfer-- no ovf/unf handling- read-bw > write-bw // dout_width >= din_width only generate for (n = 0; n < NUM_OF_CHANNELS; n = n + 1) begin: g_in if (M_MEM_RATIO == 1) begin always @(posedge din_clk) begin if (din_req_cnt[6] == 1'b1) begin din_wdata[((DOUT_DATA_WIDTH*(n+1))-1):(DOUT_DATA_WIDTH*n)] <= din_data_s[((DIN_DATA_WIDTH*(n+1))-1):(DIN_DATA_WIDTH*n)]; end end end else begin always @(posedge din_clk) begin if (din_req_cnt[6] == 1'b1) begin din_wdata[((DOUT_DATA_WIDTH*(n+1))-1):(DOUT_DATA_WIDTH*n)] <= {din_data_s[((DIN_DATA_WIDTH*(n+1))-1):(DIN_DATA_WIDTH*n)], din_wdata[((DOUT_DATA_WIDTH*(n+1))-1):(DIN_DATA_WIDTH+(DOUT_DATA_WIDTH*n))]}; end end end end endgenerate always @(posedge din_clk or negedge din_rstn) begin if (din_rstn == 1'b0) begin din_waddr <= 'd0; din_wr <= 1'd0; end else begin if (din_wr == 1'b1) begin din_waddr <= din_waddr + 1'b1; end case (M_MEM_RATIO) 8: din_wr <= din_req_cnt[6] & din_req_cnt[2] & din_req_cnt[1] & din_req_cnt[0]; 4: din_wr <= din_req_cnt[6] & din_req_cnt[1] & din_req_cnt[0]; 2: din_wr <= din_req_cnt[6] & din_req_cnt[0]; default: din_wr <= din_req_cnt[6]; endcase end end always @(posedge din_clk or negedge din_rstn) begin if (din_rstn == 1'b0) begin din_req_cnt <= 'd0; end else begin if (din_req_s == 1'b1) begin case (M_MEM_RATIO) 8: din_req_cnt <= 7'h40; 4: din_req_cnt <= 7'h60; 2: din_req_cnt <= 7'h70; default: din_req_cnt <= 7'h78; endcase end else if (din_req_cnt[6] == 1'b1) begin din_req_cnt <= din_req_cnt + 1'b1; end end end assign din_req_s = din_req_t_m3 ^ din_req_t_m2; always @(posedge din_clk or negedge din_rstn) begin if (din_rstn == 1'b0) begin din_enable_m1 <= 'd0; din_enable <= 'd0; din_req_t_m1 <= 'd0; din_req_t_m2 <= 'd0; din_req_t_m3 <= 'd0; end else begin din_enable_m1 <= dout_enable; din_enable <= din_enable_m1; din_req_t_m1 <= dout_req_t; din_req_t_m2 <= din_req_t_m1; din_req_t_m3 <= din_req_t_m2; end end // read interface (bus expansion and/or clock conversion) assign dout_enable_s = { dout_enable_7, dout_enable_6, dout_enable_5, dout_enable_4, dout_enable_3, dout_enable_2, dout_enable_1, dout_enable_0}; assign dout_valid_s = { dout_valid_7, dout_valid_6, dout_valid_5, dout_valid_4, dout_valid_3, dout_valid_2, dout_valid_1, dout_valid_0}; generate if (NUM_OF_CHANNELS >= 8) begin assign dout_data_s = dout_rdata; end else begin assign dout_data_s[(T_DOUT_DATA_WIDTH+1):DATA_WIDTH] = 'd0; assign dout_data_s[(DATA_WIDTH-1):0] = dout_rdata; end endgenerate assign dout_data_7 = dout_data[((DOUT_DATA_WIDTH*8)-1):(DOUT_DATA_WIDTH*7)]; assign dout_data_6 = dout_data[((DOUT_DATA_WIDTH*7)-1):(DOUT_DATA_WIDTH*6)]; assign dout_data_5 = dout_data[((DOUT_DATA_WIDTH*6)-1):(DOUT_DATA_WIDTH*5)]; assign dout_data_4 = dout_data[((DOUT_DATA_WIDTH*5)-1):(DOUT_DATA_WIDTH*4)]; assign dout_data_3 = dout_data[((DOUT_DATA_WIDTH*4)-1):(DOUT_DATA_WIDTH*3)]; assign dout_data_2 = dout_data[((DOUT_DATA_WIDTH*3)-1):(DOUT_DATA_WIDTH*2)]; assign dout_data_1 = dout_data[((DOUT_DATA_WIDTH*2)-1):(DOUT_DATA_WIDTH*1)]; assign dout_data_0 = dout_data[((DOUT_DATA_WIDTH*1)-1):(DOUT_DATA_WIDTH*0)]; generate for (n = 0; n < NUM_OF_CHANNELS; n = n + 1) begin: g_out always @(posedge dout_clk) begin if (dout_rst == 1'b1) begin dout_data[((DOUT_DATA_WIDTH*(n+1))-1):(DOUT_DATA_WIDTH*n)] <= 'd0; end else if (dout_valid_s[n] == 1'b1) begin dout_data[((DOUT_DATA_WIDTH*(n+1))-1):(DOUT_DATA_WIDTH*n)] <= dout_data_s[((DOUT_DATA_WIDTH*(n+1))-1):(DOUT_DATA_WIDTH*n)]; end end end endgenerate always @(posedge dout_clk) begin dout_rdata <= dout_rdata_s; end always @(posedge dout_clk) begin if (dout_rst == 1'b1) begin dout_enable <= 'd0; dout_req_t <= 'd0; dout_raddr <= 'd0; end else begin dout_enable <= dout_enable_s; if (dout_valid_s[0] == 1'b1) begin if (dout_raddr[2:0] == 3'd0) begin dout_req_t <= ~dout_req_t; end dout_raddr <= dout_raddr + 1'b1; end end end always @(posedge dout_clk) begin if (dout_rst == 1'b1) begin dout_unf_m1 <= 'd0; dout_unf <= 'd0; end else begin dout_unf_m1 <= din_unf; dout_unf <= dout_unf_m1; end end // instantiations ad_mem #(.ADDRESS_WIDTH(ADDRESS_WIDTH), .DATA_WIDTH(DATA_WIDTH)) i_mem ( .clka (din_clk), .wea (din_wr), .addra (din_waddr), .dina (din_wdata), .clkb (dout_clk), .addrb (dout_raddr), .doutb (dout_rdata_s)); endmodule // *************************************************************************** // ***************************************************************************