// - Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // - Neither the name of Analog Devices, Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // - The use of this software may or may not infringe the patent rights // of one or more patent holders. This license does not release you // from the requirement that you obtain separate licenses from these // patent holders to use this software. // - Use of the software either in source or binary form, must be run // on or directly connected to an Analog Devices Inc. component. // // THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, // INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE ARE DISCLAIMED. // // IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY // RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // *************************************************************************** // *************************************************************************** // This interface includes both the transmit and receive components - // They both uses the same clock (sourced from the receiving side). // assumes RX_IQ is 1 for I and 0 for Q (RX_IFIRST = 1 , RXIQ_HILO = 1) `timescale 1ns/100ps module axi_ad9963_if #( // this parameter controls the buffer type based on the target device. parameter DEVICE_TYPE = 0, parameter DAC_IODELAY_ENABLE = 0, parameter IO_DELAY_GROUP = "dev_if_delay_group") ( // physical interface (receive) input trx_clk, input trx_iq, input [11:0] trx_data, // physical interface (transmit) input tx_clk, output tx_iq, output [11:0] tx_data, // clock (common to both receive and transmit) input rst, output l_clk, output dac_clk, input dac_rst, // receive data path interface output reg adc_valid, output reg [23:0] adc_data, output reg adc_status, // transmit data path interface input dac_valid, input [23:0] dac_data, // delay interface input up_clk, input [12:0] up_adc_dld, input [64:0] up_adc_dwdata, output [64:0] up_adc_drdata, input delay_clk, input delay_rst, output delay_locked); // internal registers reg [11:0] rx_data_p = 0; reg [11:0] tx_data_p = 'd0; reg [11:0] tx_data_n = 'd0; // internal signals wire [11:0] rx_data_p_s; wire [11:0] rx_data_n_s; wire rx_iq_p_s; wire rx_iq_n_s; wire tx_clk_serdes; wire div_clk; genvar l_inst; always @(posedge l_clk) begin if( rx_iq_p_s == 1'b1) begin adc_data <= {rx_data_n_s, rx_data_p_s} ; // data[11:00] I adc_valid <= 1'b1; // data[23:12] Q end else begin rx_data_p <= rx_data_p_s; // if this happens it means that risedge data is sampled on falledge adc_data <= {rx_data_p, rx_data_n_s} ; // so we take current N data with previous P data adc_valid <= 1'b1; // in order to have data sampled at the same instance sent to the DMA end end always @(posedge dac_clk) begin if(dac_valid == 1'b1) begin tx_data_p <= dac_data[11:0] ; tx_data_n <= dac_data[23:12]; end end always @(posedge l_clk) begin if (rst == 1'b1) begin adc_status <= 1'b0; end else begin adc_status <= 1'b1; end end // device clock interface (receive clock) BUFG i_clk_gbuf ( .I (trx_clk), .O (l_clk)); // receive data interface, ibuf -> idelay -> iddr generate for (l_inst = 0; l_inst <= 11; l_inst = l_inst + 1) begin: g_rx_data ad_lvds_in #( .SINGLE_ENDED (1), .DEVICE_TYPE (DEVICE_TYPE), .IODELAY_CTRL (0), .IODELAY_GROUP (IO_DELAY_GROUP)) i_rx_data ( .rx_clk (l_clk), .rx_data_in_p (trx_data[l_inst]), .rx_data_in_n (1'b0), .rx_data_p (rx_data_p_s[l_inst]), .rx_data_n (rx_data_n_s[l_inst]), .up_clk (up_clk), .up_dld (up_adc_dld[l_inst]), .up_dwdata (up_adc_dwdata[((l_inst*5)+4):(l_inst*5)]), .up_drdata (up_adc_drdata[((l_inst*5)+4):(l_inst*5)]), .delay_clk (delay_clk), .delay_rst (delay_rst), .delay_locked ()); end endgenerate // receive iq interface, ibuf -> idelay -> iddr ad_lvds_in #( .SINGLE_ENDED (1), .DEVICE_TYPE (DEVICE_TYPE), .IODELAY_CTRL (1), .IODELAY_GROUP (IO_DELAY_GROUP)) i_rx_iq ( .rx_clk (l_clk), .rx_data_in_p (trx_iq), .rx_data_in_n (1'b0), .rx_data_p (rx_iq_p_s), .rx_data_n (rx_iq_n_s), .up_clk (up_clk), .up_dld (up_adc_dld[12]), .up_dwdata (up_adc_dwdata[64:60]), .up_drdata (up_adc_drdata[64:60]), .delay_clk (delay_clk), .delay_rst (delay_rst), .delay_locked (delay_locked)); // transmit data interface BUFG dac_bufg ( .I(div_clk), .O(dac_clk)); ad_serdes_clk #( .DEVICE_TYPE(DEVICE_TYPE), .DDR_OR_SDR_N(0), .MMCM_OR_BUFR_N (1'b0), .CLKIN_DS_OR_SE_N(0), .SERDES_FACTOR(2)) tx_serdes_clk ( .rst(1'b0), .clk_in_p(tx_clk), .clk_in_n(1'b0), .clk(tx_clk_serdes), .div_clk(div_clk), .out_clk(), .loaden(), .phase(), .up_clk(1'b0), .up_rstn(1'b0), .up_drp_sel(1'b0), .up_drp_wr(1'b0), .up_drp_addr(12'h0), .up_drp_wdata(32'h0), .up_drp_rdata(), .up_drp_ready(), .up_drp_locked()); ad_serdes_out #( .DEVICE_TYPE (DEVICE_TYPE), .DDR_OR_SDR_N (1'b0), .SERDES_FACTOR(2), .DATA_WIDTH (13)) i_serdes_out_data ( .rst (dac_rst), .clk (tx_clk_serdes), .div_clk (div_clk), .loaden (1'b0), .data_s0 ({1'b1,tx_data_p}), .data_s1 ({1'b0,tx_data_n}), .data_s2 (13'h0), .data_s3 (13'h0), .data_s4 (13'h0), .data_s5 (13'h0), .data_s6 (13'h0), .data_s7 (13'h0), .data_out_se ({tx_iq,tx_data}), .data_out_p (), .data_out_n ()); endmodule // *************************************************************************** // ***************************************************************************