// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module avl_dacfifo_rd #( parameter AVL_DATA_WIDTH = 512, parameter DAC_DATA_WIDTH = 64, parameter AVL_BURST_LENGTH = 127, parameter AVL_DDR_BASE_ADDRESS = 0, parameter AVL_DDR_ADDRESS_LIMIT = 33554432, parameter DAC_MEM_ADDRESS_WIDTH = 8)( input dac_clk, input dac_reset, input dac_valid, output reg [(DAC_DATA_WIDTH-1):0] dac_data, output reg dac_xfer_req, output reg dac_dunf, input avl_clk, input avl_reset, output reg [24:0] avl_address, output reg [ 6:0] avl_burstcount, output [63:0] avl_byteenable, input avl_waitrequest, input avl_readdatavalid, output reg avl_read, input [AVL_DATA_WIDTH-1:0] avl_data, input [24:0] avl_last_address, input [ 6:0] avl_last_burstcount, input [ 7:0] dma_last_beats, input avl_xfer_req_in, output reg avl_xfer_req_out); // Max supported MEM_RATIO is 16 localparam MEM_RATIO = AVL_DATA_WIDTH/DAC_DATA_WIDTH; localparam AVL_MEM_ADDRESS_WIDTH = (MEM_RATIO == 1) ? DAC_MEM_ADDRESS_WIDTH : (MEM_RATIO == 2) ? (DAC_MEM_ADDRESS_WIDTH - 1) : (MEM_RATIO == 4) ? (DAC_MEM_ADDRESS_WIDTH - 2) : (MEM_RATIO == 8) ? (DAC_MEM_ADDRESS_WIDTH - 3) : (MEM_RATIO == 16) ? (DAC_MEM_ADDRESS_WIDTH - 4) : (DAC_MEM_ADDRESS_WIDTH - 5); localparam AVL_MEM_THRESHOLD_LO = AVL_BURST_LENGTH; localparam AVL_MEM_THRESHOLD_HI = {(AVL_MEM_ADDRESS_WIDTH){1'b1}} - AVL_BURST_LENGTH; localparam DAC_MEM_THRESHOLD = 2 * (AVL_BURST_LENGTH * MEM_RATIO); localparam MEM_WIDTH_DIFF = (MEM_RATIO > 16) ? 5 : (MEM_RATIO > 8) ? 4 : (MEM_RATIO > 4) ? 3 : (MEM_RATIO > 2) ? 2 : (MEM_RATIO > 1) ? 1 : 1; // FSM state definition localparam IDLE = 5'b00001; localparam XFER_STAGING = 5'b00010; localparam XFER_FULL_BURST = 5'b00100; localparam XFER_PARTIAL_BURST = 5'b01000; localparam XFER_END = 5'b10000; // internal register reg [AVL_MEM_ADDRESS_WIDTH-1:0] avl_mem_waddr; reg [AVL_MEM_ADDRESS_WIDTH-1:0] avl_mem_laddr; reg avl_mem_laddr_toggle; reg [AVL_MEM_ADDRESS_WIDTH-1:0] avl_mem_waddr_g; reg [DAC_MEM_ADDRESS_WIDTH-1:0] avl_mem_raddr; reg [DAC_MEM_ADDRESS_WIDTH-1:0] avl_mem_raddr_m1; reg [DAC_MEM_ADDRESS_WIDTH-1:0] avl_mem_raddr_m2; reg avl_mem_request_data; reg [AVL_MEM_ADDRESS_WIDTH-1:0] avl_mem_addr_diff; reg [ 4:0] avl_read_state; reg [ 7:0] avl_burstcounter; reg avl_inread; reg [AVL_MEM_ADDRESS_WIDTH-1:0] dac_mem_waddr; reg [AVL_MEM_ADDRESS_WIDTH-1:0] dac_mem_waddr_m1; reg [AVL_MEM_ADDRESS_WIDTH-1:0] dac_mem_waddr_m2; reg [DAC_MEM_ADDRESS_WIDTH-1:0] dac_mem_laddr; reg [DAC_MEM_ADDRESS_WIDTH-1:0] dac_mem_raddr; reg [DAC_MEM_ADDRESS_WIDTH-1:0] dac_mem_raddr_g; reg [DAC_MEM_ADDRESS_WIDTH-1:0] dac_mem_addr_diff; reg [ 7:0] dac_mem_laddr_waddr; reg [ 7:0] dac_mem_laddr_raddr; reg dac_mem_laddr_valid; reg dac_avl_xfer_req; reg dac_avl_xfer_req_m1; reg dac_avl_xfer_req_m2; reg [ 7:0] dac_dma_last_beats_m1; reg [ 7:0] dac_dma_last_beats_m2; reg [ 7:0] dac_dma_last_beats; reg [ 3:0] dac_mem_laddr_toggle_m; reg [DAC_MEM_ADDRESS_WIDTH-1:0] dac_mem_laddr_b; reg dac_mem_renable; reg dac_mem_valid; reg dac_xfer_req_d; // internal signals wire avl_fifo_reset_s; wire [AVL_MEM_ADDRESS_WIDTH-1:0] avl_mem_raddr_s; wire [AVL_MEM_ADDRESS_WIDTH:0] avl_mem_addr_diff_s; wire [AVL_MEM_ADDRESS_WIDTH-1:0] avl_mem_waddr_b2g_s; wire [DAC_MEM_ADDRESS_WIDTH-1:0] avl_mem_raddr_g2b_s; wire [DAC_MEM_ADDRESS_WIDTH-1:0] avl_mem_laddr_s; wire avl_read_int_s; wire avl_end_of_burst_s; wire dac_fifo_reset_s; wire [DAC_MEM_ADDRESS_WIDTH:0] dac_mem_addr_diff_s; wire [DAC_MEM_ADDRESS_WIDTH-1:0] dac_mem_waddr_s; wire [AVL_MEM_ADDRESS_WIDTH-1:0] dac_mem_waddr_g2b_s; wire [DAC_MEM_ADDRESS_WIDTH-1:0] dac_mem_raddr_b2g_s; wire [DAC_DATA_WIDTH-1:0] dac_mem_data_s; wire dac_mem_laddr_wea_s; wire dac_mem_laddr_rea_s; wire dac_mem_laddr_unf_s; wire [DAC_MEM_ADDRESS_WIDTH-1:0] dac_mem_laddr_s; wire dac_mem_dunf_s; // An asymmetric memory to transfer data from Avalon interface to DAC // interface alt_mem_asym_rd i_mem_asym ( .mem_i_wrclock (avl_clk), .mem_i_wren (avl_readdatavalid), .mem_i_wraddress (avl_mem_waddr), .mem_i_datain (avl_data), .mem_i_rdclock (dac_clk), .mem_i_rdaddress (dac_mem_raddr), .mem_o_dataout (dac_mem_data_s)); // the fifo reset is the dma_xfer_req assign avl_fifo_reset_s = avl_reset || ~avl_xfer_req_out; assign dac_fifo_reset_s = dac_reset || ~dac_avl_xfer_req; // loop back the avl_xfer_req to the WRITE module -- this way we can make // sure, that in case of a new DMA transfer, the last avalon read burst is // finished, so the upcomming avalon writes will not block the interface always @(posedge avl_clk) begin if (avl_reset == 1'b1) begin avl_xfer_req_out <= 1'b0; end else begin if ((avl_read_state == IDLE) || (avl_read_state == XFER_STAGING) || (avl_read_state == XFER_END)) begin avl_xfer_req_out <= avl_xfer_req_in; end end end // FSM to generate the necessary Avalon Write transactions always @(posedge avl_clk) begin if (avl_fifo_reset_s == 1'b1) begin avl_read_state <= IDLE; avl_burstcount <= AVL_BURST_LENGTH; end else begin case (avl_read_state) IDLE : begin if (avl_xfer_req_in == 1'b1) begin avl_read_state <= XFER_STAGING; end else begin avl_read_state <= IDLE; end end XFER_STAGING : begin if (avl_xfer_req_in == 1'b1) begin if (avl_mem_request_data == 1'b1) begin if (avl_address + AVL_BURST_LENGTH <= avl_last_address) begin avl_read_state <= XFER_FULL_BURST; avl_burstcount <= AVL_BURST_LENGTH; end else begin avl_read_state <= XFER_PARTIAL_BURST; avl_burstcount <= avl_last_burstcount; end end end else begin avl_read_state <= IDLE; end end // Avalon transaction with full burst length XFER_FULL_BURST : begin if (avl_burstcounter < avl_burstcount) begin avl_read_state <= XFER_FULL_BURST; end else begin avl_read_state <= XFER_STAGING; end end // Avalon transaction with the remaining data, burst length is less than // the maximum supported burst length XFER_PARTIAL_BURST : begin if (avl_burstcounter < avl_burstcount) begin avl_read_state <= XFER_PARTIAL_BURST; end else begin avl_read_state <= XFER_END; end end XFER_END : begin avl_read_state <= IDLE; end default : begin avl_read_state <= IDLE; end endcase end end // FSM outputs assign avl_read_int_s = ((avl_read_state == XFER_FULL_BURST) || (avl_read_state == XFER_PARTIAL_BURST)) ? 1 : 0; assign avl_end_of_burst_s = (avl_burstcount == avl_burstcounter) ? 1 : 0; // Avalon address generation and read control signaling always @(posedge avl_clk) begin if (avl_fifo_reset_s == 1'b1) begin avl_address <= AVL_DDR_BASE_ADDRESS; end else begin if (avl_end_of_burst_s == 1'b1) begin avl_address <= (avl_address < avl_last_address) ? avl_address + avl_burstcount : AVL_DDR_BASE_ADDRESS; end end end always @(posedge avl_clk) begin if (avl_reset == 1'b1) begin avl_read <= 1'b0; avl_inread <= 1'b0; end else begin if (avl_read == 1'b0) begin if ((avl_waitrequest == 1'b0) && (avl_read_int_s == 1'b1) && (avl_inread == 1'b0)) begin avl_read <= 1'b1; avl_inread <= 1'b1; end end else if ((avl_read == 1'b1) && (avl_waitrequest == 1'b0)) begin avl_read <= 1'b0; end if (avl_end_of_burst_s == 1'b1) begin avl_inread <= 1'b0; end end end // Avalon burstcounter always @(posedge avl_clk) begin if (avl_fifo_reset_s == 1'b1) begin avl_burstcounter <= 8'b0; end else begin if ((avl_read_int_s == 1'b1) && (avl_readdatavalid == 1'b1)) begin avl_burstcounter <= (avl_burstcounter < avl_burstcount) ? avl_burstcounter + 1'b1 : 1'b0; end else if (avl_end_of_burst_s == 1'b1) begin avl_burstcounter <= 8'b0; end end end assign avl_byteenable = {64{1'b1}}; // write data from Avalon interface into the async FIFO always @(posedge avl_clk) begin if (avl_fifo_reset_s == 1'b1) begin avl_mem_waddr <= 'b0; avl_mem_waddr_g <= 'b0; avl_mem_laddr <= 'b0; avl_mem_laddr_toggle <= 1'b0; end else begin if (avl_readdatavalid == 1'b1) begin avl_mem_waddr <= avl_mem_waddr + 1'b1; end if (avl_read_state == XFER_END) begin avl_mem_laddr <= avl_mem_waddr - 1'b1; avl_mem_laddr_toggle <= ~avl_mem_laddr_toggle; end avl_mem_waddr_g <= avl_mem_waddr_b2g_s; end end ad_b2g #( .DATA_WIDTH(AVL_MEM_ADDRESS_WIDTH) ) i_avl_mem_wr_addr_b2g ( .din (avl_mem_waddr), .dout (avl_mem_waddr_b2g_s)); // control the FIFO to prevent overflow, underflow is monitored assign avl_mem_raddr_s = (MEM_RATIO == 1) ? avl_mem_raddr : (MEM_RATIO == 2) ? avl_mem_raddr[(DAC_MEM_ADDRESS_WIDTH-1):1] : (MEM_RATIO == 4) ? avl_mem_raddr[(DAC_MEM_ADDRESS_WIDTH-1):2] : (MEM_RATIO == 8) ? avl_mem_raddr[(DAC_MEM_ADDRESS_WIDTH-1):3] : (MEM_RATIO == 16) ? avl_mem_raddr[(DAC_MEM_ADDRESS_WIDTH-1):4] : avl_mem_raddr[(DAC_MEM_ADDRESS_WIDTH-1):5]; assign avl_mem_laddr_s = (MEM_RATIO == 1) ? avl_mem_laddr : (MEM_RATIO == 2) ? {avl_mem_laddr, 1'b0} : (MEM_RATIO == 4) ? {avl_mem_laddr, 2'b0} : (MEM_RATIO == 8) ? {avl_mem_laddr, 3'b0} : (MEM_RATIO == 16) ? {avl_mem_laddr, 4'b0} : {avl_mem_laddr, 5'b0}; assign avl_mem_addr_diff_s = {1'b1, avl_mem_waddr} - avl_mem_raddr_s; always @(posedge avl_clk) begin if (avl_fifo_reset_s == 1'b1) begin avl_mem_addr_diff <= 'd0; avl_mem_raddr <= 'd0; avl_mem_raddr_m1 <= 'd0; avl_mem_raddr_m2 <= 'd0; avl_mem_request_data <= 'd0; end else begin avl_mem_raddr_m1 <= dac_mem_raddr_g; avl_mem_raddr_m2 <= avl_mem_raddr_m1; avl_mem_raddr <= avl_mem_raddr_g2b_s; avl_mem_addr_diff <= avl_mem_addr_diff_s[AVL_MEM_ADDRESS_WIDTH-1:0]; if (avl_xfer_req_out == 1'b0) begin avl_mem_request_data <= 1'b0; end else if (avl_mem_addr_diff >= AVL_MEM_THRESHOLD_HI) begin avl_mem_request_data <= 1'b0; end else if (avl_mem_addr_diff <= AVL_MEM_THRESHOLD_LO) begin avl_mem_request_data <= 1'b1; end end end ad_g2b #( .DATA_WIDTH(DAC_MEM_ADDRESS_WIDTH) ) i_avl_mem_rd_addr_g2b ( .din (avl_mem_raddr_m2), .dout (avl_mem_raddr_g2b_s)); // Push data from the async FIFO to the DAC // Data flow is controlled by the DAC, no back-pressure. If FIFO is not // ready, data will be dropped assign dac_mem_waddr_s = (MEM_RATIO == 1) ? dac_mem_waddr : (MEM_RATIO == 2) ? {dac_mem_waddr, 1'b0} : (MEM_RATIO == 4) ? {dac_mem_waddr, 2'b0} : (MEM_RATIO == 8) ? {dac_mem_waddr, 3'b0} : (MEM_RATIO == 16) ? {dac_mem_waddr, 4'b0} : {dac_mem_waddr, 5'b0}; assign dac_mem_addr_diff_s = {1'b1, dac_mem_waddr_s} - dac_mem_raddr; always @(posedge dac_clk) begin if (dac_fifo_reset_s == 1'b1) begin dac_mem_waddr_m2 <= 0; dac_mem_waddr_m1 <= 0; dac_mem_waddr <= 0; dac_mem_laddr <= 0; dac_mem_laddr_toggle_m <= 4'b0; end else begin dac_mem_waddr_m1 <= avl_mem_waddr_g; dac_mem_waddr_m2 <= dac_mem_waddr_m1; dac_mem_waddr <= dac_mem_waddr_g2b_s; dac_mem_laddr_toggle_m <= {dac_mem_laddr_toggle_m[2:0], avl_mem_laddr_toggle}; dac_mem_laddr <= (dac_mem_laddr_toggle_m[2] ^ dac_mem_laddr_toggle_m[1]) ? avl_mem_laddr_s : dac_mem_laddr; end end // A buffer for storing the dac_mem_laddr (the address of the last avalon // beat inside the CDC fifo) // If the stored data sequence is smaller, it can happen that multiple // dac_mem_laddr values exist in the same time. This buffers stores this // values and make sure that they are feeded to the read logic in order. assign dac_mem_laddr_wea_s = dac_mem_laddr_toggle_m[3] ^ dac_mem_laddr_toggle_m[2]; assign dac_mem_laddr_rea_s = ((dac_mem_raddr == dac_mem_laddr_b) && (dac_mem_laddr_unf_s == 1'b0)) ? 1'b1 :1'b0; always @(posedge dac_clk) begin if (dac_fifo_reset_s == 1'b1) begin dac_mem_laddr_waddr <= 0; dac_mem_laddr_raddr <= 0; end else begin dac_mem_laddr_waddr <= (dac_mem_laddr_wea_s == 1'b1) ? dac_mem_laddr_waddr + 1 : dac_mem_laddr_waddr; dac_mem_laddr_raddr <= (dac_mem_laddr_rea_s == 1'b1) ? dac_mem_laddr_raddr + 1 : dac_mem_laddr_raddr; end end assign dac_mem_laddr_unf_s = (dac_mem_laddr_waddr == dac_mem_laddr_raddr) ? 1'b1 : 1'b0; always @(posedge dac_clk) begin if (dac_fifo_reset_s == 1'b1) begin dac_mem_laddr_valid <= 1'b0; end else begin if (dac_mem_laddr_wea_s == 1'b1) dac_mem_laddr_valid <= 1'b1; end end ad_mem #( .DATA_WIDTH (DAC_MEM_ADDRESS_WIDTH), .ADDRESS_WIDTH (8)) i_mem ( .clka (dac_clk), .wea (dac_mem_laddr_wea_s), .addra (dac_mem_laddr_waddr), .dina (dac_mem_laddr), .clkb (dac_clk), .reb (1'b1), .addrb (dac_mem_laddr_raddr), .doutb (dac_mem_laddr_s)); ad_g2b #( .DATA_WIDTH(AVL_MEM_ADDRESS_WIDTH) ) i_dac_mem_wr_addr_g2b ( .din (dac_mem_waddr_m2), .dout (dac_mem_waddr_g2b_s)); always @(posedge dac_clk) begin if (dac_reset == 1'b1) begin dac_avl_xfer_req_m2 <= 0; dac_avl_xfer_req_m1 <= 0; dac_avl_xfer_req <= 0; end else begin dac_avl_xfer_req_m1 <= avl_xfer_req_out; dac_avl_xfer_req_m2 <= dac_avl_xfer_req_m1; dac_avl_xfer_req <= dac_avl_xfer_req_m2; end end always @(posedge dac_clk) begin if (dac_reset == 1'b1) begin dac_dma_last_beats_m2 <= 0; dac_dma_last_beats_m1 <= 0; dac_dma_last_beats <= 0; end else begin dac_dma_last_beats_m1 <= dma_last_beats; dac_dma_last_beats_m2 <= dac_dma_last_beats_m1; dac_dma_last_beats <= dac_dma_last_beats_m2; end end always @(posedge dac_clk) begin if (dac_fifo_reset_s == 1'b1) begin dac_mem_renable <= 1'b0; dac_mem_valid <= 1'b0; end else begin if (dac_mem_dunf_s == 1'b1) begin dac_mem_renable = 1'b0; end else if (dac_mem_addr_diff >= DAC_MEM_THRESHOLD) begin dac_mem_renable = 1'b1; end dac_mem_valid <= (dac_mem_renable) ? dac_valid : 1'b0; end end assign dac_mem_dunf_s = (dac_mem_addr_diff_s[DAC_MEM_ADDRESS_WIDTH-1:0] == {DAC_MEM_ADDRESS_WIDTH{1'b0}}) ? 1'b1 : 1'b0; always @(posedge dac_clk) begin if (dac_fifo_reset_s == 1'b1) begin dac_mem_raddr <= 0; dac_mem_raddr_g <= 0; dac_mem_addr_diff <= 0; dac_mem_laddr_b <= 0; end else begin dac_mem_laddr_b <= (!dac_mem_laddr_unf_s) ? dac_mem_laddr_s : dac_mem_laddr_b; dac_mem_addr_diff <= dac_mem_addr_diff_s[DAC_MEM_ADDRESS_WIDTH-1:0]; if (dac_mem_valid) begin if ((dac_dma_last_beats != {MEM_WIDTH_DIFF{1'b1}}) && (dac_mem_raddr == (dac_mem_laddr_b + dac_dma_last_beats)) && (dac_mem_laddr_valid == 1'b1)) begin dac_mem_raddr <= dac_mem_raddr + (MEM_RATIO - dac_dma_last_beats); end else begin dac_mem_raddr <= dac_mem_raddr + 1'b1; end end dac_mem_raddr_g <= dac_mem_raddr_b2g_s; end end ad_b2g #( .DATA_WIDTH(DAC_MEM_ADDRESS_WIDTH) ) i_dac_mem_rd_addr_b2g ( .din (dac_mem_raddr), .dout (dac_mem_raddr_b2g_s)); always @(posedge dac_clk) begin if (dac_fifo_reset_s == 1'b1) begin dac_xfer_req <= 1'b0; dac_xfer_req_d <= 1'b0; dac_data <= {DAC_DATA_WIDTH{1'b0}}; end else begin dac_xfer_req_d <= dac_mem_renable; dac_xfer_req <= dac_xfer_req_d; dac_data <= (dac_xfer_req_d == 1'b1) ? dac_mem_data_s : {DAC_DATA_WIDTH{1'b0}}; end end always @(posedge dac_clk) begin if (dac_fifo_reset_s == 1'b1) begin dac_dunf <= 1'b0; end else begin dac_dunf <= (dac_mem_addr_diff == 0) ? 1'b1 : 1'b0; end end endmodule