// *************************************************************************** // *************************************************************************** // Copyright (C) 2014-2023 Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** // too bad- we have to do this! `timescale 1ns/100ps module util_bsplit #( parameter CHANNEL_DATA_WIDTH = 1, parameter NUM_OF_CHANNELS = 8 ) ( input [((NUM_OF_CHANNELS*CHANNEL_DATA_WIDTH)-1):0] data, output [(CHANNEL_DATA_WIDTH-1):0] split_data_0, output [(CHANNEL_DATA_WIDTH-1):0] split_data_1, output [(CHANNEL_DATA_WIDTH-1):0] split_data_2, output [(CHANNEL_DATA_WIDTH-1):0] split_data_3, output [(CHANNEL_DATA_WIDTH-1):0] split_data_4, output [(CHANNEL_DATA_WIDTH-1):0] split_data_5, output [(CHANNEL_DATA_WIDTH-1):0] split_data_6, output [(CHANNEL_DATA_WIDTH-1):0] split_data_7 ); localparam NUM_OF_CHANNELS_M = 9; // internal signals wire [((NUM_OF_CHANNELS_M*CHANNEL_DATA_WIDTH)-1):0] data_s; // extend and split assign data_s[((NUM_OF_CHANNELS_M*CHANNEL_DATA_WIDTH)-1):(NUM_OF_CHANNELS*CHANNEL_DATA_WIDTH)] = 'd0; assign data_s[((NUM_OF_CHANNELS*CHANNEL_DATA_WIDTH)-1):0] = data; assign split_data_0 = data_s[((CHANNEL_DATA_WIDTH*1)-1):(CHANNEL_DATA_WIDTH*0)]; assign split_data_1 = data_s[((CHANNEL_DATA_WIDTH*2)-1):(CHANNEL_DATA_WIDTH*1)]; assign split_data_2 = data_s[((CHANNEL_DATA_WIDTH*3)-1):(CHANNEL_DATA_WIDTH*2)]; assign split_data_3 = data_s[((CHANNEL_DATA_WIDTH*4)-1):(CHANNEL_DATA_WIDTH*3)]; assign split_data_4 = data_s[((CHANNEL_DATA_WIDTH*5)-1):(CHANNEL_DATA_WIDTH*4)]; assign split_data_5 = data_s[((CHANNEL_DATA_WIDTH*6)-1):(CHANNEL_DATA_WIDTH*5)]; assign split_data_6 = data_s[((CHANNEL_DATA_WIDTH*7)-1):(CHANNEL_DATA_WIDTH*6)]; assign split_data_7 = data_s[((CHANNEL_DATA_WIDTH*8)-1):(CHANNEL_DATA_WIDTH*7)]; endmodule