The util_cpack core is currently not used by the M2K project. Refresh the
Makefiles to reflect this.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
All the hdl (verilog and vhdl) source files were updated. If a file did not
have any license, it was added into it. Files, which were generated by
a tool (like Matlab) or were took over from other source (like opencores.org),
were unchanged.
New license looks as follows:
Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
Each core or library found in this collection may have its own licensing terms.
The user should keep this in in mind while exploring these cores.
Redistribution and use in source and binary forms,
with or without modification of this file, are permitted under the terms of either
(at the option of the user):
1. The GNU General Public License version 2 as published by the
Free Software Foundation, which can be found in the top level directory, or at:
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
OR
2. An ADI specific BSD license as noted in the top level directory, or on-line at:
https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE
Currently the DAC FIFO size for the ZC706 DAQ2 project is 16kB. This is
quite a limiting size for practical applications. Increase the size to 1MB
to allow loading larger waveforms.
In this configuration the DAC FIFO will use half of the available BRAM
cells in the FPGA. This still leaves quite a few BRAMs available for
user application logic added to the design. If a user design should run out
of BRAMs nevertheless they can reduce the FIFO size, if not required by the
application, to free up some cells.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
If a parameter value is defined as a string binary (e.g. "001001000000"),
it can confuse the tool, and the value may be used as a decimal number.
To prevent this issue and to improve readability converting all the binary
constants into hexadecimal.
Configure the interconnect and offload modules inorder to activate
its interfaces. In the past, these interfaces did not have any
parameter dependencies, so this configuration were not required.
It seems that there are some dependencies between the fir compiler
cores parameters. With the old order of the parameter settings,
the tool throws the following warning:
CRITICAL WARNING: [BD 41-237] Bus Interface property TDATA_NUM_BYTES
does not match between /processing/sequencer/i_q_filtered(4)
and /processing/lpf/M_AXIS_DATA(5)
Depending on the configuration of the clock source type of the input clock
the clocking wizard will instantiate all kinds of buffers on the input
clock signal.
For these particular projects there is no need to add any kind of buffer
since the source is already coming from a global clock buffer. So set the
configuration accordingly.
Avoids the following warning:
[Opt 31-32] Removing redundant IBUF since it is not being driven by a
top-level port. i_system_wrapper/system_i/sys_audio_clkgen/inst/clkin1_ibufg
Resolution: The tool has removed redundant IBUF. To resolve this
warning, check for redundant IBUF in the input design.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
There is no need for the audio clock to be phase aligned to its source
clock. When phase alignment is disabled the MMCM uses an internal feedback
path without requiring external resources, so disable it.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Instead of manually specifying the input clock frequency let the core infer
it automatically. This makes it more straight forward to change the clock
frequency.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Neither the reset nor the locked signal is used in this design, so disable them. Avoids warnings about unconnected pins.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Depending on the configuration of the clock source type of the input clock
the clocking wizard will instantiate all kinds of buffers on the input
clock signal.
For these particular projects there is no need to add any kind of buffer
since the source is already coming from a global clock buffer. So set the
configuration accordingly.
Avoids the following warning:
[Opt 31-32] Removing redundant IBUF since it is not being driven by a
top-level port. i_system_wrapper/system_i/sys_audio_clkgen/inst/clkin1_ibufg
Resolution: The tool has removed redundant IBUF. To resolve this
warning, check for redundant IBUF in the input design.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
There is no need for the audio clock to be phase aligned to its source
clock. When phase alignment is disabled the MMCM uses an internal feedback
path without requiring external resources, so disable it.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Instead of manually specifying the input clock frequency let the core infer
it automatically. This makes it more straight forward to change the clock
frequency.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The input clock frequency of the axi_clkgen was changed from 200 MHz to
100 Mhz. Update the divider settings accordingly to keep the standard
default output frequency of 148.5 MHz.
The incorrect divider settings did not affect operation of the design since
software reprograms them at startup anyway, but changing them avoids the
following warning:
[DRC 23-20] Rule violation (AVAL-46) v7v8_mmcm_fvco_rule1 - The current computed target frequency, FVCO, is out of range for cell i_system_wrapper/system_i/axi_hdmi_clkgen/inst/i_mmcm_drp/i_mmcm. The computed FVCO is 445.455 MHz. The valid FVCO range for speed grade -1 is 600MHz to 1200MHz. The cell attribute values used to compute FVCO are CLKFBOUT_MULT_F = 49.000, CLKIN1_PERIOD = 10.00000, and DIVCLK_DIVIDE = 11 (FVCO = 1000 * CLKFBOUT_MULT_F/(CLKIN1_PERIOD * DIVCLK_DIVIDE)).
This violation may be corrected by:
1. The timer uses timing constraints for clock period or clock frequency that affect CLKIN1 to set cell attribute CLKIN1_PERIOD, over-riding any previous value. This may already be in place and, if so this violation will be resolved once Timing is run. Otherwise, consider modifying timing constraints to adjust the CLKIN1_PERIOD and bring FVCO into the allowed range.
2. In the absence of timing constraints that affect CLKIN1, consider modifying the cell CLKIN1_PERIOD to bring FVCO into the allowed range.
3. If CLKIN1_PERIOD is satisfactory, modify the CLKFBOUT_MULT_F or DIVCLK_DIVIDE cell attributes to bring FVCO into the allowed range.
4. The MMCM configuration may be dynamically modified by use of DRP which is recognized by an ACTIVE signal on DCLK pin.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
There is no need for the audio clock to be phase aligned to its source
clock. When phase alignment is disabled the MMCM uses an internal feedback
path without requiring external resources, so disable it.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Depending on the configuration of the clock source type of the input clock
the clocking wizard will instantiate all kinds of buffers on the input
clock signal.
For these particular projects there is no need to add any kind of buffer
since the source is already coming from a global clock buffer. So set the
configuration accordingly.
Avoids the following warning:
[Opt 31-32] Removing redundant IBUF since it is not being driven by a
top-level port. i_system_wrapper/system_i/sys_audio_clkgen/inst/clkin1_ibufg
Resolution: The tool has removed redundant IBUF. To resolve this
warning, check for redundant IBUF in the input design.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Instead of manually specifying the input clock frequency let the core infer
it automatically. This makes it more straight forward to change the clock
frequency.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
For the M2K standalone version we run the interface clock at a lower rate
to reduce the power consumption. While this is not necessary on the ZED
board we also run the interface at a lower rate for consistency.
Currently the video DMA on the ZED board uses the interface clock for the
data path as well. This is now too slow to support 1080p@60Hz so move it
over to a faster clock.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Instead of manually specifying the input clock frequency let the core infer
it automatically. This makes it more straight forward to change the clock
frequency.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
At the moment the PS7 is using three PLLs to generate its clocking tree.
One for the DDR, one for the ARM and one for the IO. This allows to run all
components at their respective maximum clock and extract maximum
performance from all components.
With some slight modifications it is possible to trade maximum performance
for a reduction in power consumption by using the same PLL for all three
sets of components and disabling the other two PLLs.
The CPU is now running at 500MHz rather than 666MHz and the DDR memory at
500MHz rather than 533MHz. This reduces power consumption by ~125mW.
This is OK since neither of them is a bottleneck for overall system
performance.
In addition software will downclock the CPU to 250MHz when full performance
is not required.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The 200 MHz clock was only used as the IODELAY controller clock. Since the
design does not use any IODELAYs anymore this clock can be removed.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The debug register logic for the DMA take up a fair amount of resources.
Disabling them frees up space in the FPGA and also helps a bit with power.
Since those registers are mainly useful in development and not so much in
production the change shouldn't have any visible external effects.
It is possible to re-enable the debug registers by setting DEBUG_BUILD=1.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The global reset signals are only asserted for a short moment during system
startup and deasserted during normal operation, which is the case we care
about for power analysis. Giving them a static switching probability
indicating that they are always de-asserted will yield better results for
power analysis.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The RX datapath has a lot of things (IQ correction, DC filter, ...) that
take up a lot of space which are all not really needed in this project. So
disable the RX datapath.
It was previously enabled because the ad9963 core did not perform
sign-extension on the ADC data signal when the datapath was disabled. But
this has now been addressed.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
At the moment the register map fabric and DMA system memory side are
clocked by the 100MHz sys_cpu_clk. While this works fine that is a lot
faster than the clock has to run. There are only a few 100 register map
accesses per seconds at most and they are not on timing critical paths. The
penalty from clocking them at a lower rate is negligible for the overall
system performance.
The maximum clock rate for the DMAs is determined by the throughput
requirements. This is 200 Mbytes/s for the logic analyzer, pattern
generator and each of the DAC DMAs and 400 Mbytes/s for the ADC DMA.
The DMA datapath width is 64-bit so the required clock rates are 25MHz and
50MHz respectively. Some headroom is required to accommodate for occasional
bubble cycles on the data bus and the difference in reference clocks for
the converter and processing system.
The sys_cpu_clk is reduced to 27.8MHz which is fast enough for all but the
ADC DMA. For the ADC DMA a new clock domain running at 55.6 MHz is
introduced.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The MMCM generating the logic analyzer clock unfortunately consumes a
disproportionately large amount of power compared to the rest of the
design.
Replace it by sourcing the logic analyzer clock from one of the Zynq FCLKs.
The IO PLL is running anyway so the power requirement is much lower.
For the time being this means we loose the ability to source the clock from
an external pin. But that feature is not supported by software at the
moment anyway. We'll bring it eventually when required.
This changes reduces power consumption by roughly 100mW.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
We always have both ADC channels enabled and the cpack core takes up a fair
amount of space, so remove it for now. Might come back later when we really
need it.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Use the new axi_rd_wr_combiner module to ... the read and write DMA
interfaces into a single interface. This allows the AXI interconnect
completely optimize itself away and reduce the overall resource utilization
of the project.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
ad_cpu_interconnect will make sure to connect the clock and the reset of
the AXI interface. Remove the redundant manual assignments.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Xilinx recommends that all synchronizer flip-flops have
their ASYNC_REG property set to true in order to preserve the
synchronizer cells through any logic optimization during synthesis
and implementation.
Because the S_AXI interface of the axi_adxcvr core was infered
using the process adi_ip_properties, the interface address range
has changed from 4k to 64k. As a result, all the addresses of
the axi_adxcvr cores were changed and realigned.
The ADV7511 samples the parallel data bus at the rising edge of sample
clock. Generate the clock so that the falling edge is aligned to updating
the bus data. This creates larger timing margins on each side of the
sampling edge and makes the design more robust.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Increase the RX DMA FIFO to be able to better compensate for momentarily
memory bus contention. This has shown to resolve occasional overflows that
would occur under high system memory load.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Connect the HDMI RX core output clock to the DMA rather than connecting the
HDMI RX input clock directly. This will allow the HDMI RX core to modify
the clock and e.g. insert clock buffers or similar.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The ADV7611 is rated for a maximum clock rate of 165MHz. Increase the clock rate constraint to match this.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
There is a bug in the ps7 component specification that causes critical
warnings to appear in the build log if DMA interface 0 is disabled, but any
other DMA interface is enabled.
Work around this issue by using DMA interface 0 and 1 instead of 1 and 2
for the I2S DMA.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>