Add support for the AD-FMCDAQ2-EBZ on the Arria10 SoC development board platform.
In its default configuration the Arria10 SoC development board is not fully
compatible with the AD-FMCDAQ2-EBZ and a slight rework is necessary,
changing the position of four 0 Ohm resistors:
R610: DNI -> R0
R611: DNI -> R0
R612: R0 -> DNI
R613: R0 -> DNI
R620: DNI -> R0
R632: DNI -> R0
R621: R0 -> DNI
R633: R0 -> DNI
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Rework the peripheral address to match the updated semantics of
ad_cpu_interconnect, which expects that the addresses are in the range of
0x00010000 - 0x001fffff. This includes updating the base addresses as well
as compressing the used address range to fit into the 2Mb window.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Currently the TX lane mapping is implemented by having to connect tx_phy_s_* to
the tx_ip_s_* and the tx_phy_d_* to the tx_ip_d_* signals in the system
qsys file in the desired order.
Re-work things so that instead the lane mapping is provided through the
TX_LANE_MAP parameter. The parameter specifies in which order logical lanes
are mapped onto the physical lanes.
The appropriate connections are than made inside the core according to this
parameter rather than having to manually connect the signals externally.
In order to generate a 1-to-1 mapping the TX_LANE_MAP parameter can be left
empty.
This change slightly reduces the boiler-plate code that is necessary to
setup the transceiver.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The PLL frequency must be half of the lane rate and the core clock rate
must be lane rate divided by 40. There is no other option, otherwise things
wont work.
Instead of having to manually specify PLL and core clock frequency derive
them in the transceiver script. This reduces the risk of accidental
misconfiguration.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Use the sys_dma_clk clock module for clock and reset signals of the data
path, rather than using the A10GX specific sys_ddr3_cntrl signals. This
enables compatibility for all Altera/Intel platforms.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Provide the correct lane mapping for the DAQ2 DAC lanes which do not follow
a 1-to-1 mapping between physical and logical lanes due to PCB layout
constraints.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Convert the DAQ2 project to the ADI JESD204 link layer cores. The change is
very straight forward, but a matching change on the software side is
required.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Move the CDC helper modules to a dedicated helper modules. This makes it
possible to reference them without having to use file paths that go outside
of the referencing project's directory.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
All the hdl (verilog and vhdl) source files were updated. If a file did not
have any license, it was added into it. Files, which were generated by
a tool (like Matlab) or were took over from other source (like opencores.org),
were unchanged.
New license looks as follows:
Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
Each core or library found in this collection may have its own licensing terms.
The user should keep this in in mind while exploring these cores.
Redistribution and use in source and binary forms,
with or without modification of this file, are permitted under the terms of either
(at the option of the user):
1. The GNU General Public License version 2 as published by the
Free Software Foundation, which can be found in the top level directory, or at:
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
OR
2. An ADI specific BSD license as noted in the top level directory, or on-line at:
https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE
Currently the DAC FIFO size for the ZC706 DAQ2 project is 16kB. This is
quite a limiting size for practical applications. Increase the size to 1MB
to allow loading larger waveforms.
In this configuration the DAC FIFO will use half of the available BRAM
cells in the FPGA. This still leaves quite a few BRAMs available for
user application logic added to the design. If a user design should run out
of BRAMs nevertheless they can reduce the FIFO size, if not required by the
application, to free up some cells.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>