Which events will be exposed as IRQs and at what level of granularity will
need some additional through. Remove the two existing IRQ events for now
again. This will be added back later.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The up_cfg_ilas_data signal is a two dimensional array. There are 4
register entries for each lane. Model it as such rather than compressing it
down to a one dimensional array. This makes accessing the individual
entries a bit more straight forward and the code clearer.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The ilas_cfg_static.v is part of the jesd204_tx_static_config module.
Somehow a copy of that file made it into the jesd204_tx module where it is
completely unused. Remove the duplicated file.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Add a check to RX register map to confirm that the ILAS memory registers
return the correct values after the ILAS data has been received.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
This partially reverts commit a8ade15173.
Remove the nonsensical Makefile dependencies that got added by accident.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The generic Altera clock monitor constraints expect the instance to be
called i_clock_mon. Adjust the code accordingly.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
In this particular case the behaviour is the same with non-blocking and
blocking assignments, but that could change if the code is modified in the
future. To avoid any potentially issue due to this consistently use
non-blocking assignments.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The SYNC signal that gets reported through the status interface should be
the output (second stage) of the synchronizer circuit.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Make sure the core_cfg_transfer_en signal is declared before they are used.
Strictly speaking the current code is correct and synthesis correctly, but
declaring the signals make the intentions of the code more explicit.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Be more standard compliant and assign names to generate for-blocks. This is
required for Altera/Intel support.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
In some cases, the 'core_ilas_config_data' registers will be infered as
FDRE, instead of FDSE. Therefor a max delay definition, which are using
the S pin as its endpoint, it can become invalid, nonexistent.
Generalize the path, using the register itself as endpoint.
Always explicitly specify the signal width for constants to avoid warnings
about signal width mismatch.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The buffer delay should be 0 in the default configuration. The current
value of 0xb must have slipped in by accident.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Use a single standalone counter that counts the number of beats since the
release of the SYNC~ signal, rather than re-using the LMFC counter plus a
dedicated multi-frame counter.
This is slightly simpler in terms of logic and also easier for software to
interpret the data.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
There are currently two sysref related events. One the sysref captured
event which is generated when an external sysref edge has been observed.
The other is the sysref alignment error event which is generated when a
sysref edge is observed that has a different alignment from previously
observed sysref edges.
Capture those events in the register map. This is useful for error
diagnostic. The events are sticky and write-1-to-clear.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The internal LMFC offset signals are in beats, whereas the register map is
in octets. Add the proper alignment padding to the register map to
translate between the two.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
For SYSREF handling there are now three possible modes.
1) Disabled. In this mode the LMFC is generated internally and all external
SYSREF edges are ignored. This mode should be used for subclass 0 when no
external sysref is available.
2) Continuous SYSREF. An external SYSREF signal is required and the LMFC is
aligned to the SYSREF signal. The SYSREF signal is continuously monitored
and if a edge unaligned to the previous edges is detected the LMFC is
re-aligned to the new edge.
3) Oneshot SYSREF. Oneshot SYSREF mode is similar to continuous SYSREF mode
except only the first edge is captured and all further edges are ignored,
re-alignment will not happen.
Both in continuous and oneshot signal at least one external sysref edge is
required before an LMFC is generated. All events that require an LMFC will
be delayed until a SYSREF edge has been captured. This is done to avoid
accidental re-alignment.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The ADI JESD204 link layer cores are a implementation of the JESD204 link
layer. They are responsible for handling the control signals (like SYNC and
SYSREF) and controlling the link state machine as well as performing
per-lane (de-)scrambling and character replacement.
Architecturally the cores are separated into two components.
1) Protocol processing cores (jesd204_rx, jesd204_tx). These cores take
care of the JESD204 protocol handling. They have configuration and status
ports that allows to configure their behaviour and monitor the current
state. The processing cores run entirely in the lane_rate/40 clock domain.
They have a upstream and a downstream port that accept and generate raw PHY
level data and transport level payload data (which is which depends on the
direction of the core).
2) Configuration interface cores (axi_jesd204_rx, axi_jesd204_tx). The
configuration interface cores provide a register map interface that allow
access to the to the configuration and status interfaces of the processing
cores. The configuration cores are responsible for implementing the clock
domain crossing between the lane_rate/40 and register map clock domain.
These new cores are compatible to all ADI converter products using the
JESD204 interface.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>