It seems that in the latest version a constant of "0" is no longer a valid
enablement dependency and "false" has be used instead.
Not setting the enablement dependency correctly results in the AXI port to
be assumed to be read-write rather than just read or write. This will
generate unnecessary logic for example in interconnects to which the DMA
controller is connected.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Add a human readable name and descriptor for the AXI DMAC core.This string
will appear in various places e.g. like the IP catalog. This is a purely
cosmetic change.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
This patch is a complementary fix of 8b8c37 patch. And fix
all the 'infer interface' issues.
The adi_ip_infer_interfaces process was renamed to
adi_ip_infer_streaming_interfaces. Now the process just do
what its name suggest.
Affected cores were axi_dmac, axi_spdif_rx, axi_spdif_tx, axi_i2s_adi
and axi_usb_fx3. All these cores scripts were updated.
Conflicts:
library/axi_ad9361/axi_ad9361_ip.tcl
library/axi_dmac/Makefile
library/axi_dmac/axi_dmac_constr.ttcl
library/axi_dmac/axi_dmac_ip.tcl
library/common/ad_tdd_control.v
projects/daq2/common/daq2_bd.tcl
projects/fmcjesdadc1/common/fmcjesdadc1_bd.tcl
projects/fmcomms2/zc706pr/system_project.tcl
projects/fmcomms2/zc706pr/system_top.v
projects/usdrx1/common/usdrx1_bd.tcl
This merge was made, to recover any forgotten fixes from master,
before creating the new release branch. All conflicts were reviewed
and resolved.
Group the axi_dmac parameters by function and provide a human readable name
for the IPI GUI. This makes it easier to understand what parameter does
what when using the IPI GUI to configure the core.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Add validation values for the different configuration parameters. This
enables the tools to check whether the configured value is valid and avoids
accidental misconfiguration.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The axi_dmac core does not issue narrow AXI bursts. Indicate this by
setting the SUPPORTS_NARROW_BURST property to 0 on both AXI master
interfaces.
This allows connected slaves to know that they will not receive narrow
bursts, which allows them to disable support for it.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Add support for querying the clock domains of the clock pins for the
axi_dmac controller. This allows the core to automatically figure out
whether its different parts run in different clock domains or not and setup
the configuration parameters accordingly.
Being able to auto-detect those configuration parameters makes the core
easier to use and also avoids accidental misconfiguration.
It is still possible to automatically overwrite the configuration
parameters by hand if necessary.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
When having multiple DMA cores sharing the same constraint file Vivado
seems to apply the constraints from the first core to all the other cores
when re-running synthesis and implementation from within the Vivado GUI.
This causes wrong timing constraints if the DMA cores have different
configurations. To avoid this issue use a TTCL template that generates a
custom constraint file for each DMA core instance.
This also allows us to drop the asynchronous clock detection hack from the
constraint file and move it to the template and only generate the CDC
constraints if the clock domains are asynchronous.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
When having multiple DMA cores sharing the same constraint file Vivado
seems to apply the constraints from the first core to all the other cores
when re-running synthesis and implementation from within the Vivado GUI.
This causes wrong timing constraints if the DMA cores have different
configurations. To avoid this issue use a TTCL template that generates a
custom constraint file for each DMA core instance.
This also allows us to drop the asynchronous clock detection hack from the
constraint file and move it to the template and only generate the CDC
constraints if the clock domains are asynchronous.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The memory mapped AXI interfaces for the AXI-DMAC are uni-directional.
Which means they are either write-only or read-only. Unfortunately the
Altera tools can't handle this, so we had to add dummy signals for the
other direction.
The Xilinx tools on the other hand handle uni-directional AXI interfaces
and in fact IPI can do a better job and use less resources when creating
the AXI interconnects when it knows that the interface is uni-directional.
So always disable the dummy ports for the IPI package.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The memory mapped AXI interfaces for the AXI-DMAC are uni-directional.
Which means they are either write-only or read-only. Unfortunately the
Altera tools can't handle this, so we had to add dummy signals for the
other direction.
The Xilinx tools on the other hand handle uni-directional AXI interfaces
and in fact IPI can do a better job and use less resources when creating
the AXI interconnects when it knows that the interface is uni-directional.
So always disable the dummy ports for the IPI package.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The memory mapped AXI interfaces for the AXI-DMAC are uni-directional.
Which means they are either write-only or read-only. Unfortunately the
Altera tools can't handle this, so we had to add dummy signals for the
other direction.
The Xilinx tools on the other hand handle uni-directional AXI interfaces
and in fact IPI can do a better job and use less resources when creating
the AXI interconnects when it knows that the interface is uni-directional.
So always disable the dummy ports for the IPI package.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Add .gitattributes file which sets up the eol encoding handling. This will
make sure that we get a uniform eol encoding across different operating
systems.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Add .gitattributes file which sets up the eol encoding handling. This will
make sure that we get a uniform eol encoding across different operating
systems.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Instead of just marking all clock domains as asynchronous set the
appropriate constraints for each CDC path.
For single-bit synchronizers use set_false_path to not constraint the path
at at all.
For multi-bit synchronizers as used for gray counters use set_max_delay with
the source clock period domain to make sure that the signal skew will not
exceed one clock period. Otherwise one bit might overtake another and the
synchronizer no longer works correctly.
For multi-bit synchronizers implemented with hold registers use
set_max_delay with the target clock period to make sure that the skew does
not get to large, otherwise we might violate setup and hold time.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Bring back the AXIS FIFO as a separate module instead of embedding it into
the DMAC module. This makes it possible to use it in other modules outside
of the DMAC.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Move the axi_repack block to its own module. This allows it to use it
outside of the DMA controller.
Also rename it to util_axis_resize to better reflect its function.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Modify the adi_add_bus() function to take the full vlnv strings instead of just the bus type.
This makes the function more flexible and e.g. allows to handle buses from other vendors.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
This silences warnings from the tools about having no clock assigned to the bus.
Also fix the name of the TVALID signal.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
There were a few place in the core where it assumed a 64-bit wide bus. Make this
configurable using parameters. The patch also adds support for having different
DMA bus widths on the source and destination side.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>