When the link is disabled the events can be ignored.
This is required by the free running event counter that can catch
invalid events during startup cased for example by an invalid link clock.
If the lane looses synchronization due invalid characters or disparity
error the lane alignment monitor checks random input which results in
irrelevant reporting of frame alignment error.
If all lanes are synchronized (CGS state machine is in DATA phase) for long
enough therefore the link is also synchronized/DATA phase reset the error
counter since the accumulated values during INIT/CHECK are irrelevant.
These errors are handled by the per-lane CGS state machine.
All errors accumulated during INIT/CHECK phase of CGS are relevant only
if the link is unable to reach the DATA phase.
The link stays in DATA phase unless software resets it,
so all errors accumulated during the DATA phase are relevant.
The previous implementation of the de-glitch only delayed the assertion
of the SYNC phase by 64 clock cycles with the DEGLITCH state but if meanwhile
one of the lanes got into a bad state cgs_ready de-asserted the state machine
continued to go SYNCHRONIZED (DATA) state.
This change extends the required number of consecutive cycles while all lanes
must stay in data phase before moving the link to SYNCHRONIZED state from 8 to 256;
This increases the reliability of link bring-up without needing extra
link restarts from software side.
Add statistics for :
- number of link enable events
- number of interrupt events (regardless of mask)
0x0B0 0x2C0 Stats Control Register
[0] - Write 1 to clear stat registers
0x0B1 0x2C4 Link Enable Stat Register
[15:0] Number of times the link was enabled from power-on or from last
stat clear
0x0B4 0x2D0 IRQ Stat Register 0
[31:16] IRQ 1 counter
[15:0] IRQ 0 counter
0x0B5 0x2D4 IRQ Stat Register 1
[31:16] IRQ 3 counter
[15:0] IRQ 2 counter
0x0B6 0x2D8 IRQ Stat Register 2
[31:16] IRQ 5 counter
[15:0] IRQ 4 counter
0x0B7 0x2DC IRQ Stat Register 3
[31:16] IRQ 7 counter
[15:0] IRQ 6 counter
Ignore the following critical warning on DMAC instance:
Critical Warning (15003): "mixed_port_feed_through_mode" parameter of RAM atom
system_bd:i_system_bd|axi_dmac:axi_dmac_0|axi_dmac_transfer:i_transfer| \
dmac_request_arb:i_request_arb|dmac_dest_mm_axi:i_dest_dma_mm| \
altsyncram:bl_mem_rtl_0|altsyncram_0tp1:auto_generated|ram_block1a1
cannot have value "old" when different read and write clocks are used.
Quartus Standard 19.1 throw a critical warning for registers that have
different reset and initial power-up level.
Do not initialize those registers so we can get rid of the warning.
Define both AXI4 Memory Mapped and microprocessor interface for the
reigster map, then activate/deactive one of it in fucntion of the memory
interface type parameter.
Define the missing status_sync interface, which should be connected to
the offload.
Context switching with a parameter is not a good idea. The simulator
may evaluate both branch of the IF statement, even though the inactive
branch may not be valid.
Use if..generate to make the code more robust for both synthesizers and
simulators.