* Added header license for the files that didn't have
* Modified parentheses
* Removed extra spaces at the end of lines
* Fixed parameters list to be each parameter on its line
* Deleted lines after endmodule and consecutive empty lines
* Fixed indentation
Signed-off-by: Iulia Moldovan <iulia.moldovan@analog.com>
Fix the *_ip.tcl scripts for axi_spi_engine and spi_engine_offload
module.
In case of a bool parameters the value_format and value properties must
be set for both user and hdl paramters. If not, in the generated verilog
code the tool will use "true" or "false" strings, instead of 0 or 1.
Forward the offload's sync_id to the register map, by defining an
additional AXI stream interface between the offload and axi_spi_engine.
The last sync_id of the offload module can read out from the
register 0x00C4. It also can generate and interrupt if the irq mask is
configured accordingly.
For consistent simulation behavior it is recommended to annotate all source
files with a timescale. Add it to those where it is currently missing.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Currently the individual IP core dependencies are tracked inside the
library Makefile for Xilinx IPs and the project Makefiles only reference
the IP cores.
For Altera on the other hand the individual dependencies are tracked inside
the project Makefile. This leads to a lot of duplicated lists and also
means that the project Makefiles need to be regenerated when one of the IP
cores changes their files.
Change the Altera projects to a similar scheme than the Xilinx projects.
The projects themselves only reference the library as a whole as their
dependency while the library Makefile references the individual source
dependencies.
Since on Altera there is no target that has to be generated create a dummy
target called ".timestamp_altera" who's only purpose is to have a timestamp
that is greater or equal to the timestamp of all of the IP core files. This
means the project Makefile can have a dependency on this file and make sure
that the project will be rebuild if any of the files in the library
changes.
This patch contains quite a bit of churn, but hopefully it reduces the
amount of churn in the future when modifying Altera IP cores.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
This reduces the amount of boilerplate code that is present in these
Makefiles by a lot.
It also makes it possible to update the Makefile rules in future without
having to re-generate all the Makefiles.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Move the CDC helper modules to a dedicated helper modules. This makes it
possible to reference them without having to use file paths that go outside
of the referencing project's directory.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
All the hdl (verilog and vhdl) source files were updated. If a file did not
have any license, it was added into it. Files, which were generated by
a tool (like Matlab) or were took over from other source (like opencores.org),
were unchanged.
New license looks as follows:
Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
Each core or library found in this collection may have its own licensing terms.
The user should keep this in in mind while exploring these cores.
Redistribution and use in source and binary forms,
with or without modification of this file, are permitted under the terms of either
(at the option of the user):
1. The GNU General Public License version 2 as published by the
Free Software Foundation, which can be found in the top level directory, or at:
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
OR
2. An ADI specific BSD license as noted in the top level directory, or on-line at:
https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE
There are devices which have a asynchronous data ready signal. (asynchronous
with the spi clock) The CDC stages can be enabled by setting up
the ASYNC_TRIG parameter.
By changing the parameter called SDI_DATA_WIDTH the spi framework can support multiple SDI lines.
The supported number of SDI lines are: 1, 2, 3 and 4.
SPI Engine is a highly flexible and powerful SPI controller framework. It
consist out of multiple sub-modules which communicate over well defined
interfaces. This allows a high degree of flexibility and re-usability while
at the same time staying highly customizable and easily extensible.
Currently included are four components:
* SPI Engine execution module: The excution module is responsible for
handling the low-level physical interface SPI logic.
* SPI Engine AXI interface module: The AXI interface module allows
memory mapped acccess to a SPI bus control stream and can be used to
implement a software driver that controls the SPI bus.
* SPI Engine offload module: The offload module allows to store a
predefined SPI Engine command and data stream which will be send out
when a external trigger signal is asserted.
* SPI Engine interconnect module: The interconnect module allows to
combine multiple control streams into a single stream giving multiple
control modules access to a execution module.
For more information see: http://wiki.analog.com/resources/fpga/peripherals/spi_engine
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>