The Xilinx's reset interface expect that every reset have an associated
interface and clock signal. The tool will try to find its clock and interface,
and automatically associated clock signal to it.
The PLL resets are individual asynchronous resets. To simplify the design
and avoid invalid critical warnings all the reset interface inference
for the PLL resets were removed.
For a proper reset synchronization, the asynchronous reset signal should
be connected to the reset pins of the two synchronizer flop, and the
data input of the first flop should be connected to VCC.
In the first stage we're synchronizing just the reset de-assertion, avoiding
the scenario when different parts of the design are reseting at different time,
causing unwanted behaviours.
In the second stage we're synchronizing the reset assertion.
The module expects an ACTIVE_HIGH input reset signal, and provides an ACTIVE_LOW
(rstn) and an ACTIVE_HIGH (rst) synchronized reset output signal.
Fix the read side of the CDC data FIFO. The read address generation did not
function correctly.
Redesign the read side of the FIFO, and make sure that it becomes empty after
the DMA transfer ends; and never get stock in a cyclic mode.
The dac_last signal is not used anywhere in the module. Remove it and its
synchronization registers.
Fixes the following warnings:
[Synth 8-6014] Unused sequential element dac_dlast_reg was removed. ["axi_dacfifo_rd.v":372]
[Synth 8-6014] Unused sequential element dac_dlast_m1_reg was removed. ["axi_dacfifo_rd.v":373]
[Synth 8-6014] Unused sequential element dac_dlast_m2_reg was removed. ["axi_dacfifo_rd.v":374]
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Commit bfc8ec28c3 ("util_axis_fifo: instantiate block ram in async mode")
added the read-enable (reb) signal to the ad_mem block.
It didn't update the ad_mem instance in axi_dacfifo_address_buffer.v. This
results in the read-enable of the address_buffer being tied to 0.
Fix this by connecting the same signal that increments the read address.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Some designs choose to swap the positive and negative side of the of the
JESD204 lanes. One reason for this would be because it can simplify the
PCB layout. The polarity is in most cases also only applied to a subset of
the used lanes.
Add support for this to the util_adxcvr module. This done by adding new
parameter to the modules that allows to specify a per lane polarity
inversion. Each bit in the parameter corresponds to one lane. If the bit is
set the polarity is inverted for his lane. E.g. setting the parameter to
0xc will invert the 3rd and 4th lane.
The setting is forwarded to the Xilinx transceiver for the corresponding
lane.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Currently the individual IP core dependencies are tracked inside the
library Makefile for Xilinx IPs and the project Makefiles only reference
the IP cores.
For Altera on the other hand the individual dependencies are tracked inside
the project Makefile. This leads to a lot of duplicated lists and also
means that the project Makefiles need to be regenerated when one of the IP
cores changes their files.
Change the Altera projects to a similar scheme than the Xilinx projects.
The projects themselves only reference the library as a whole as their
dependency while the library Makefile references the individual source
dependencies.
Since on Altera there is no target that has to be generated create a dummy
target called ".timestamp_altera" who's only purpose is to have a timestamp
that is greater or equal to the timestamp of all of the IP core files. This
means the project Makefile can have a dependency on this file and make sure
that the project will be rebuild if any of the files in the library
changes.
This patch contains quite a bit of churn, but hopefully it reduces the
amount of churn in the future when modifying Altera IP cores.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The DC filter implementation in library/common/dc_filter.v is Xilinx
specific as it uses the Xilinx DSP48 hard-macro. There is a matching Altera
specific implementation in library/altera/common/dc_filter.v.
Move the Xilinx specific implementation from the generic common folder to
the Xilinx specific common folder in library/xilinx/common/ since that is
where all other Xilinx specific common modules reside.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
This reduces the amount of boilerplate code that is present in these
Makefiles by a lot.
It also makes it possible to update the Makefile rules in future without
having to re-generate all the Makefiles.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
In cases when a shallow FIFO is requested the synthesizer infers distributed RAM
instead of block RAMs. This can be an issue when the clocks of the FIFO are
asynchronous since a timing path is created though the LUTs which implement the
memory, resulting in timing failures. Ignoring timing through the path is not a
solution since would lead to metastability.
This does not happens with block RAMs.
The solution is to use the ad_mem (block RAM) in case of async clocks and letting
the synthesizer do it's job in case of sync clocks for optimal resource utilization.
The up_rstn is driven by s_axi_resetn, which is generated by a
Processor System Reset module. (connected to port peripheral_aresetn)
Therefor using this reset signal as an asynchronous reset is redundant,
and a bad design practice at the same time. Asynchronous reset should be
used if it's inevitable.
The util_adxcvr supports GTX2, GTH3 and GTH4. The transceiver is selected
using the XCVR_TYPE parameter.
The axi_adxcvr on the other hand only has a configuration parameter to
indicate whether a GTX or GTH transceiver is used (GTH_OR_GTX_N). Since
there are some minor differences between GTH3 and GTH4 that software needs
to know about rename the GTH_OR_GTX_N to XCVR_TYPE and match use the same
semantics as util_adxcvr.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Add missing timing exceptions on paths between the DMA and DDR clock
domains. All these paths are properly synchronized using CDC in the HDL,
but are missing timing exceptions in the XDC file. This can lead to timing
errors when building a design using the axi_adc_fifo.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Redesign the axi_dacfifo, to increase the supported datarates.
Major modifications:
+ The FIFO consist of two module: WRITE and READ. The axi_dacfifo_dac
was deprecated.
+ Both the AXI write and AXI read transaction are controlled by two
FSM, to increase redability of the code.
+ Support all the possible burst lengths [0..225], handles the last
fractional burst on both sides correctly.
+ Common reset architecture throughout the design, all the internal
registers and memories are reset on the posedge of dma_xfer_req
+ Delete all Altera related sources, for Altera projects
avl_dacfifo should be used.
WIP: foobar
[WIP]axi_dacfifo: Update
axi_dacfifo: Few minor updates, almost working state
The external s_axi_{awaddr,araddr} signals that are connect to the core
have their width set according to the specified size of the register map.
If the s_axi_{awaddr,araddr} signal of the core is wider (as it currently
is for many cores) the MSBs of those signals are left unconnected, which
generates a warning.
To avoid this make sure that the signal width matches the declared register
map size.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Increase the width of wvalid_counter, should be equal with awlen width.
The wvalid_counter needs to count from zero to the required burst
length. The maximum burst length is 255, so the width of the counter
have to be 8 bits. axi_last_beats will get the last axi burst length.
The fifo will ask for a new data from the DDR, if the current
level is lower than the high threshold. This will prevent overflow.
By deleting the lower threshold, we can avoid ocassional underflows,
when the DAC rate is closer to the max DDRx rate.
Fix the dma_ready mux in top module, and the dma_ready_out reset
logic in axi_dacfifo_wr module. Also, both write and read addresses
of the async CDC fifo (inside the axi_dacfifo_wr) should be reset
before a dma transaction starts.
When using non-broadcast access to the GT DRP registers lane filtering is
done on both sides. The ready and data signals are filtered in the in the
axi_adxcvr module and the enable signal is filtered in the util_adxcvr
module. This works fine as long as both sides use the same transceiver IDs.
E.g. channel 0 of the axi_adxcvr module is connected to channel 0 of the
util_adxcvr module.
But this is not always the case. E.g. on the ADRV9371 platform there are
two RX axi_adxcvr modules (RX and RX_OS) connected to the same util_adxcvr.
The first axi_adxcvr uses lane 0 and 1 of the util_adxcvr, the second uses
lane 2 and 3.
Non-broadcast access for the first RX axi_adxcvr module works fine, but
always generates a timeout for the second axi_adxcvr module. This is
because lane 0/1 of the axi_adxcvr module is connected to lane 2/3 of the
util_adxcvr and when ID based filtering is done both can't match at the
same time.
To avoid this perform the filtering for all the signals in the axi_adxcvr
module. This makes sure that the same base ID is used.
This also removes the sel signal from the transceiver interfaces since it
is no longer used on the util_adxcvr side.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Currently the scripts use 'analog.com' as the vendor property for IP cores,
but 'ADI' for interfaces.
Make things consistent by using 'analog.com' for both interfaces as well
as IP cores.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Currently the clock monitor features a hold register in the monitored clock
domain. This old register is used to store a instantaneous copy of the
counter register. The value in the old register is then transferred to the
monitoring domain. Since the counter is continuously counting it is not
possible to directly transfer it since that might result in inconsistent
data.
Instead stop the counter and hold the registers stable for a duration that
is long enough for the monitoring domain to correctly capture the value.
Once the value has been transferred the counter is reset and restarted for
the next iteration.
This allows to eliminate the hold register, which slightly reduces
utilization.
The externally visible behaviour is identical before and after the patch.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
All the hdl (verilog and vhdl) source files were updated. If a file did not
have any license, it was added into it. Files, which were generated by
a tool (like Matlab) or were took over from other source (like opencores.org),
were unchanged.
New license looks as follows:
Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
Each core or library found in this collection may have its own licensing terms.
The user should keep this in in mind while exploring these cores.
Redistribution and use in source and binary forms,
with or without modification of this file, are permitted under the terms of either
(at the option of the user):
1. The GNU General Public License version 2 as published by the
Free Software Foundation, which can be found in the top level directory, or at:
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
OR
2. An ADI specific BSD license as noted in the top level directory, or on-line at:
https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE
Can not be multiple 'if' statements inside a generate block. If there are
multiple cases use if/esle statement, but always should be one single
if/else inside a generate.
Currently the IDDRs are configured in SAME_EDGE_PIPELINED mode, but then
the negative data is delayed by an additional clock cycle. This is the same
behaviour as using the IDDR in SAME_EDGE mode.
Switching to SAME_EDGE mode removes extra pipelining registers while
maintaining the same behaviour.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Xilinx recommends that all synchronizer flip-flops have
their ASYNC_REG property set to true in order to preserve the
synchronizer cells through any logic optimization during synthesis
and implementation.