util_axis_fifo: Add TKEEP support

main
Istvan Csomortani 2021-02-26 09:07:32 +00:00 committed by István Csomortáni
parent 0d3d099beb
commit 9611be9ded
2 changed files with 102 additions and 21 deletions

View File

@ -40,13 +40,16 @@ module util_axis_fifo #(
parameter ASYNC_CLK = 1, parameter ASYNC_CLK = 1,
parameter M_AXIS_REGISTERED = 1, parameter M_AXIS_REGISTERED = 1,
parameter [ADDRESS_WIDTH-1:0] ALMOST_EMPTY_THRESHOLD = 16, parameter [ADDRESS_WIDTH-1:0] ALMOST_EMPTY_THRESHOLD = 16,
parameter [ADDRESS_WIDTH-1:0] ALMOST_FULL_THRESHOLD = 16 parameter [ADDRESS_WIDTH-1:0] ALMOST_FULL_THRESHOLD = 16,
parameter TLAST_EN = 0,
parameter TKEEP_EN = 0
) ( ) (
input m_axis_aclk, input m_axis_aclk,
input m_axis_aresetn, input m_axis_aresetn,
input m_axis_ready, input m_axis_ready,
output m_axis_valid, output m_axis_valid,
output [DATA_WIDTH-1:0] m_axis_data, output [DATA_WIDTH-1:0] m_axis_data,
output [DATA_WIDTH/8-1:0] m_axis_tkeep,
output m_axis_tlast, output m_axis_tlast,
output [ADDRESS_WIDTH-1:0] m_axis_level, output [ADDRESS_WIDTH-1:0] m_axis_level,
output m_axis_empty, output m_axis_empty,
@ -57,18 +60,26 @@ module util_axis_fifo #(
output s_axis_ready, output s_axis_ready,
input s_axis_valid, input s_axis_valid,
input [DATA_WIDTH-1:0] s_axis_data, input [DATA_WIDTH-1:0] s_axis_data,
input [DATA_WIDTH/8-1:0] s_axis_tkeep,
input s_axis_tlast, input s_axis_tlast,
output [ADDRESS_WIDTH-1:0] s_axis_room, output [ADDRESS_WIDTH-1:0] s_axis_room,
output s_axis_full, output s_axis_full,
output s_axis_almost_full output s_axis_almost_full
); );
localparam MEM_WORD = (TKEEP_EN & TLAST_EN) ? (DATA_WIDTH+DATA_WIDTH/8+1) :
(TKEEP_EN) ? (DATA_WIDTH+DATA_WIDTH/8) :
(TLAST_EN) ? (DATA_WIDTH+1) :
(DATA_WIDTH);
wire [MEM_WORD-1:0] s_axis_data_int_s;
wire [MEM_WORD-1:0] m_axis_data_int_s;
generate if (ADDRESS_WIDTH == 0) begin : zerodeep /* it's not a real FIFO, just a 1 stage pipeline */ generate if (ADDRESS_WIDTH == 0) begin : zerodeep /* it's not a real FIFO, just a 1 stage pipeline */
if (ASYNC_CLK) begin if (ASYNC_CLK) begin
(* KEEP = "yes" *) reg [DATA_WIDTH-1:0] cdc_sync_fifo_ram; (* KEEP = "yes" *) reg [DATA_WIDTH-1:0] cdc_sync_fifo_ram;
reg axis_tlast_d;
reg s_axis_waddr = 1'b0; reg s_axis_waddr = 1'b0;
reg m_axis_raddr = 1'b0; reg m_axis_raddr = 1'b0;
@ -107,7 +118,6 @@ generate if (ADDRESS_WIDTH == 0) begin : zerodeep /* it's not a real FIFO, just
always @(posedge s_axis_aclk) begin always @(posedge s_axis_aclk) begin
if (s_axis_ready == 1'b1 && s_axis_valid == 1'b1) if (s_axis_ready == 1'b1 && s_axis_valid == 1'b1)
cdc_sync_fifo_ram <= s_axis_data; cdc_sync_fifo_ram <= s_axis_data;
axis_tlast_d <= s_axis_tlast;
end end
always @(posedge s_axis_aclk) begin always @(posedge s_axis_aclk) begin
@ -128,31 +138,55 @@ generate if (ADDRESS_WIDTH == 0) begin : zerodeep /* it's not a real FIFO, just
end end
assign m_axis_data = cdc_sync_fifo_ram; assign m_axis_data = cdc_sync_fifo_ram;
assign m_axis_tlast = axis_tlast_d;
end else begin /* !ASYNC_CLK */ // TLAST support
if (TLAST_EN) begin
reg axis_tlast_d;
always @(posedge s_axis_aclk) begin
if (s_axis_ready == 1'b1 && s_axis_valid == 1'b1)
axis_tlast_d <= s_axis_tlast;
end
assign m_axis_tlast = axis_tlast_d;
end
// TKEEP support
if (TKEEP_EN) begin
reg axis_tkeep_d;
always @(posedge s_axis_aclk) begin
if (s_axis_ready == 1'b1 && s_axis_valid == 1'b1)
axis_tkeep_d <= s_axis_tkeep;
end
assign m_axis_tkeep = axis_tkeep_d;
end
end /* zerodeep */
else
begin /* !ASYNC_CLK */
// Note: In this mode, the write and read interface must have a symmetric // Note: In this mode, the write and read interface must have a symmetric
// aspect ratio // aspect ratio
reg [DATA_WIDTH-1:0] axis_data_d; reg [DATA_WIDTH-1:0] axis_data_d;
reg axis_valid_d; reg axis_valid_d;
reg axis_tlast_d;
always @(posedge s_axis_aclk) begin always @(posedge s_axis_aclk) begin
if (!s_axis_aresetn) begin if (!s_axis_aresetn) begin
axis_data_d <= {DATA_WIDTH{1'b0}}; axis_data_d <= {DATA_WIDTH{1'b0}};
axis_valid_d <= 1'b0; axis_valid_d <= 1'b0;
axis_tlast_d <= 1'b0;
end else if (s_axis_ready) begin end else if (s_axis_ready) begin
axis_data_d <= s_axis_data; axis_data_d <= s_axis_data;
axis_valid_d <= s_axis_valid; axis_valid_d <= s_axis_valid;
axis_tlast_d <= s_axis_tlast;
end end
end end
assign m_axis_data = axis_data_d; assign m_axis_data = axis_data_d;
assign m_axis_valid = axis_valid_d; assign m_axis_valid = axis_valid_d;
assign m_axis_tlast = axis_tlast_d;
assign s_axis_ready = m_axis_ready | ~m_axis_valid; assign s_axis_ready = m_axis_ready | ~m_axis_valid;
assign m_axis_empty = 1'b0; assign m_axis_empty = 1'b0;
assign m_axis_almost_empty = 1'b0; assign m_axis_almost_empty = 1'b0;
@ -161,7 +195,36 @@ generate if (ADDRESS_WIDTH == 0) begin : zerodeep /* it's not a real FIFO, just
assign s_axis_almost_full = 1'b0; assign s_axis_almost_full = 1'b0;
assign s_axis_room = 1'b0; assign s_axis_room = 1'b0;
end // TLAST support
if (TLAST_EN) begin
reg axis_tlast_d;
always @(posedge s_axis_aclk) begin
if (!s_axis_aresetn) begin
axis_tlast_d <= 1'b0;
end else if (s_axis_ready) begin
axis_tlast_d <= s_axis_tlast;
end
end
assign m_axis_tlast = axis_tlast_d;
end
// TKEEP support
if (TKEEP_EN) begin
reg axis_tkeep_d;
always @(posedge s_axis_aclk) begin
if (!s_axis_aresetn) begin
axis_tkeep_d <= 1'b0;
end else if (s_axis_ready) begin
axis_tkeep_d <= s_axis_tkeep;
end
end
assign m_axis_tkeep = axis_tkeep_d;
end
end /* !ASYNC_CLK */
end else begin : fifo /* ADDRESS_WIDTH != 0 - this is a real FIFO implementation */ end else begin : fifo /* ADDRESS_WIDTH != 0 - this is a real FIFO implementation */
@ -214,6 +277,25 @@ end else begin : fifo /* ADDRESS_WIDTH != 0 - this is a real FIFO implementation
.s_axis_room(s_axis_room) .s_axis_room(s_axis_room)
); );
// TLAST and TKEEP support
if (TLAST_EN & TKEEP_EN) begin
assign s_axis_data_int_s = {s_axis_tkeep, s_axis_tlast, s_axis_data};
assign m_axis_tkeep = m_axis_data_int_s[MEM_WORD-1-:DATA_WIDTH/8];
assign m_axis_tlast = m_axis_data_int_s[DATA_WIDTH];
assign m_axis_data = m_axis_data_int_s[DATA_WIDTH-1:0];
end else if (TKEEP_EN) begin
assign s_axis_data_int_s = {s_axis_tkeep, s_axis_data};
assign m_axis_tkeep = m_axis_data_int_s[MEM_WORD-1-:DATA_WIDTH/8];
assign m_axis_data = m_axis_data_int_s[DATA_WIDTH-1:0];
end else if (TLAST_EN) begin
assign s_axis_data_int_s = {s_axis_tlast, s_axis_data};
assign m_axis_tlast = m_axis_data_int_s[DATA_WIDTH];
assign m_axis_data = m_axis_data_int_s[DATA_WIDTH-1:0];
end else begin
assign s_axis_data_int_s = {s_axis_data};
assign m_axis_data = m_axis_data_int_s[DATA_WIDTH-1:0];
end
if (ASYNC_CLK == 1) begin : async_clocks /* Asynchronous WRITE/READ clocks */ if (ASYNC_CLK == 1) begin : async_clocks /* Asynchronous WRITE/READ clocks */
// The assumption is that in this mode the M_AXIS_REGISTERED is 1 // The assumption is that in this mode the M_AXIS_REGISTERED is 1
@ -221,17 +303,17 @@ end else begin : fifo /* ADDRESS_WIDTH != 0 - this is a real FIFO implementation
// regardless of the requested size to make sure we threat the // regardless of the requested size to make sure we threat the
// clock crossing correctly // clock crossing correctly
ad_mem #( ad_mem #(
.DATA_WIDTH (DATA_WIDTH+1), .DATA_WIDTH (MEM_WORD),
.ADDRESS_WIDTH (ADDRESS_WIDTH)) .ADDRESS_WIDTH (ADDRESS_WIDTH))
i_mem ( i_mem (
.clka(s_axis_aclk), .clka(s_axis_aclk),
.wea(s_mem_write), .wea(s_mem_write),
.addra(s_axis_waddr), .addra(s_axis_waddr),
.dina({s_axis_tlast, s_axis_data}), .dina(s_axis_data_int_s),
.clkb(m_axis_aclk), .clkb(m_axis_aclk),
.reb(m_mem_read), .reb(m_mem_read),
.addrb(m_axis_raddr), .addrb(m_axis_raddr),
.doutb({m_axis_tlast, m_axis_data}) .doutb(m_axis_data_int_s)
); );
assign _m_axis_ready = ~valid || m_axis_ready; assign _m_axis_ready = ~valid || m_axis_ready;
@ -239,18 +321,18 @@ end else begin : fifo /* ADDRESS_WIDTH != 0 - this is a real FIFO implementation
end else begin : sync_clocks /* Synchronous WRITE/READ clocks */ end else begin : sync_clocks /* Synchronous WRITE/READ clocks */
reg [DATA_WIDTH:0] ram[0:2**ADDRESS_WIDTH-1]; reg [MEM_WORD-1:0] ram[0:2**ADDRESS_WIDTH-1];
// When the clocks are synchronous use behavioral modeling for the SDP RAM // When the clocks are synchronous use behavioral modeling for the SDP RAM
// Let the synthesizer decide what to infer (distributed or block RAM) // Let the synthesizer decide what to infer (distributed or block RAM)
always @(posedge s_axis_aclk) begin always @(posedge s_axis_aclk) begin
if (s_mem_write) if (s_mem_write)
ram[s_axis_waddr] <= {s_axis_tlast, s_axis_data}; ram[s_axis_waddr] <= s_axis_data_int_s;
end end
if (M_AXIS_REGISTERED == 1) begin if (M_AXIS_REGISTERED == 1) begin
reg [DATA_WIDTH:0] data; reg [MEM_WORD-1:0] data;
always @(posedge m_axis_aclk) begin always @(posedge m_axis_aclk) begin
if (m_mem_read) if (m_mem_read)
@ -258,15 +340,14 @@ end else begin : fifo /* ADDRESS_WIDTH != 0 - this is a real FIFO implementation
end end
assign _m_axis_ready = ~valid || m_axis_ready; assign _m_axis_ready = ~valid || m_axis_ready;
assign m_axis_data = data[DATA_WIDTH-1:0]; assign m_axis_data_int_s = data;
assign m_axis_tlast = data[DATA_WIDTH];
assign m_axis_valid = valid; assign m_axis_valid = valid;
end else begin end else begin
assign _m_axis_ready = m_axis_ready; assign _m_axis_ready = m_axis_ready;
assign m_axis_valid = _m_axis_valid; assign m_axis_valid = _m_axis_valid;
assign {m_axis_tlast, m_axis_data} = ram[m_axis_raddr]; assign m_axis_data_int_s = ram[m_axis_raddr];
end end
end end

View File

@ -96,7 +96,7 @@ wire [ADDRESS_WIDTH-1:0] m_axis_level_s;
// Write address counter // Write address counter
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
assign s_axis_write_s = s_axis_ready && s_axis_valid; assign s_axis_write_s = s_axis_ready && s_axis_valid && ~s_axis_full;
always @(posedge s_axis_aclk) always @(posedge s_axis_aclk)
begin begin
if (!s_axis_aresetn) if (!s_axis_aresetn)
@ -110,7 +110,7 @@ end
// Read address counter // Read address counter
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
assign m_axis_read_s = m_axis_ready && m_axis_valid; assign m_axis_read_s = m_axis_ready && m_axis_valid && ~m_axis_empty;
always @(posedge m_axis_aclk) always @(posedge m_axis_aclk)
begin begin
if (!m_axis_aresetn) if (!m_axis_aresetn)