ad_mem_asym: Add support for more ratios.
Supported ratios: 1:1/1:2/1:4/1:8/2:1/4:1/8:1main
parent
69d721526a
commit
42cd05ab19
|
@ -1,9 +1,9 @@
|
|||
// ***************************************************************************
|
||||
// ***************************************************************************
|
||||
// Copyright 2011(c) Analog Devices, Inc.
|
||||
//
|
||||
//
|
||||
// All rights reserved.
|
||||
//
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
// - Redistributions of source code must retain the above copyright
|
||||
|
@ -21,22 +21,25 @@
|
|||
// patent holders to use this software.
|
||||
// - Use of the software either in source or binary form, must be run
|
||||
// on or directly connected to an Analog Devices Inc. component.
|
||||
//
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
||||
// INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
|
||||
// PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
//
|
||||
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
|
||||
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
||||
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
||||
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
||||
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
||||
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
// ***************************************************************************
|
||||
// ***************************************************************************
|
||||
// ***************************************************************************
|
||||
// ***************************************************************************
|
||||
|
||||
// A simple asymetric memory. The write and read memory space must have the same size.
|
||||
// 2^A_ADDRESS_WIDTH * A_DATA_WIDTH == 2^B_ADDRESS_WIDTH * B_DATA_WIDTH
|
||||
|
||||
`timescale 1ns/100ps
|
||||
|
||||
module ad_mem_asym (
|
||||
|
@ -50,86 +53,125 @@ module ad_mem_asym (
|
|||
addrb,
|
||||
doutb);
|
||||
|
||||
parameter A_ADDRESS_WIDTH = 10;
|
||||
parameter A_ADDRESS_WIDTH = 8;
|
||||
parameter A_DATA_WIDTH = 256;
|
||||
parameter B_ADDRESS_WIDTH = 8;
|
||||
parameter B_ADDRESS_WIDTH = 10;
|
||||
parameter B_DATA_WIDTH = 64;
|
||||
|
||||
localparam MEM_SIZE_A = 2**A_ADDRESS_WIDTH;
|
||||
localparam MEM_SIZE_B = 2**B_ADDRESS_WIDTH;
|
||||
localparam MEM_SIZE = (MEM_SIZE_A > MEM_SIZE_B) ? MEM_SIZE_A : MEM_SIZE_B;
|
||||
localparam MEM_RATIO = A_DATA_WIDTH/B_DATA_WIDTH;
|
||||
localparam MEM_ADDRESS_WIDTH = (A_ADDRESS_WIDTH > B_ADDRESS_WIDTH) ? A_ADDRESS_WIDTH : B_ADDRESS_WIDTH;
|
||||
localparam MEM_DATA_WIDTH = (A_DATA_WIDTH > B_DATA_WIDTH) ? B_DATA_WIDTH : A_DATA_WIDTH;
|
||||
localparam MEM_SIZE = 2 ** MEM_ADDRESS_WIDTH;
|
||||
// suported ratios: 1:1 / 1:2 / 1:4 / 1:8 / 2:1 / 4:1 / 8:1
|
||||
localparam MEM_RATIO = (A_DATA_WIDTH > B_DATA_WIDTH) ? A_DATA_WIDTH/B_DATA_WIDTH : B_DATA_WIDTH/A_DATA_WIDTH;
|
||||
localparam MEM_IO_COMP = (A_DATA_WIDTH > B_DATA_WIDTH) ? 1'b1 : 1'b0;
|
||||
|
||||
// write interface
|
||||
|
||||
input clka;
|
||||
input wea;
|
||||
input [A_ADDRESS_WIDTH-1:0] addra;
|
||||
input [A_DATA_WIDTH-1:0] dina;
|
||||
input clka;
|
||||
input wea;
|
||||
input [A_ADDRESS_WIDTH-1:0] addra;
|
||||
input [A_DATA_WIDTH-1:0] dina;
|
||||
|
||||
// read interface
|
||||
|
||||
input clkb;
|
||||
input [B_ADDRESS_WIDTH-1:0] addrb;
|
||||
output [B_DATA_WIDTH-1:0] doutb;
|
||||
input clkb;
|
||||
input [B_ADDRESS_WIDTH-1:0] addrb;
|
||||
output [B_DATA_WIDTH-1:0] doutb;
|
||||
|
||||
// internal registers
|
||||
|
||||
reg [B_DATA_WIDTH-1:0] m_ram[0:MEM_SIZE-1];
|
||||
reg [B_DATA_WIDTH-1:0] doutb;
|
||||
reg [MEM_DATA_WIDTH-1:0] m_ram[0:MEM_SIZE-1];
|
||||
reg [B_DATA_WIDTH-1:0] doutb;
|
||||
|
||||
// write interface
|
||||
// write interface options
|
||||
|
||||
generate
|
||||
if (MEM_RATIO == 1) begin
|
||||
always @(posedge clka) begin
|
||||
if (wea == 1'b1) begin
|
||||
m_ram[addra] <= dina;
|
||||
generate if (MEM_IO_COMP == 0) begin
|
||||
always @(posedge clka) begin
|
||||
if (wea == 1'b1) begin
|
||||
m_ram[addra] <= dina;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
if (MEM_RATIO == 2) begin
|
||||
always @(posedge clka) begin
|
||||
if (wea == 1'b1) begin
|
||||
m_ram[{addra, 1'd0}] <= dina[((1*B_DATA_WIDTH)-1):(B_DATA_WIDTH*0)];
|
||||
m_ram[{addra, 1'd1}] <= dina[((2*B_DATA_WIDTH)-1):(B_DATA_WIDTH*1)];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
if (MEM_RATIO == 4) begin
|
||||
always @(posedge clka) begin
|
||||
if (wea == 1'b1) begin
|
||||
m_ram[{addra, 2'd0}] <= dina[((1*B_DATA_WIDTH)-1):(B_DATA_WIDTH*0)];
|
||||
m_ram[{addra, 2'd1}] <= dina[((2*B_DATA_WIDTH)-1):(B_DATA_WIDTH*1)];
|
||||
m_ram[{addra, 2'd2}] <= dina[((3*B_DATA_WIDTH)-1):(B_DATA_WIDTH*2)];
|
||||
m_ram[{addra, 2'd3}] <= dina[((4*B_DATA_WIDTH)-1):(B_DATA_WIDTH*3)];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
if (MEM_RATIO == 8) begin
|
||||
always @(posedge clka) begin
|
||||
if (wea == 1'b1) begin
|
||||
m_ram[{addra, 3'd0}] <= dina[((1*B_DATA_WIDTH)-1):(B_DATA_WIDTH*0)];
|
||||
m_ram[{addra, 3'd1}] <= dina[((2*B_DATA_WIDTH)-1):(B_DATA_WIDTH*1)];
|
||||
m_ram[{addra, 3'd2}] <= dina[((3*B_DATA_WIDTH)-1):(B_DATA_WIDTH*2)];
|
||||
m_ram[{addra, 3'd3}] <= dina[((4*B_DATA_WIDTH)-1):(B_DATA_WIDTH*3)];
|
||||
m_ram[{addra, 3'd4}] <= dina[((5*B_DATA_WIDTH)-1):(B_DATA_WIDTH*4)];
|
||||
m_ram[{addra, 3'd5}] <= dina[((6*B_DATA_WIDTH)-1):(B_DATA_WIDTH*5)];
|
||||
m_ram[{addra, 3'd6}] <= dina[((7*B_DATA_WIDTH)-1):(B_DATA_WIDTH*6)];
|
||||
m_ram[{addra, 3'd7}] <= dina[((8*B_DATA_WIDTH)-1):(B_DATA_WIDTH*7)];
|
||||
end
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
// read interface
|
||||
|
||||
always @(posedge clkb) begin
|
||||
doutb <= m_ram[addrb];
|
||||
generate if ((MEM_IO_COMP == 1) && (MEM_RATIO == 2)) begin
|
||||
always @(posedge clka) begin
|
||||
if (wea == 1'b1) begin
|
||||
m_ram[{addra, 1'd0}] <= dina[((1*B_DATA_WIDTH)-1):(B_DATA_WIDTH*0)];
|
||||
m_ram[{addra, 1'd1}] <= dina[((2*B_DATA_WIDTH)-1):(B_DATA_WIDTH*1)];
|
||||
end
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
generate if ((MEM_IO_COMP == 1) && (MEM_RATIO == 4)) begin
|
||||
always @(posedge clka) begin
|
||||
if (wea == 1'b1) begin
|
||||
m_ram[{addra, 2'd0}] <= dina[((1*B_DATA_WIDTH)-1):(B_DATA_WIDTH*0)];
|
||||
m_ram[{addra, 2'd1}] <= dina[((2*B_DATA_WIDTH)-1):(B_DATA_WIDTH*1)];
|
||||
m_ram[{addra, 2'd2}] <= dina[((3*B_DATA_WIDTH)-1):(B_DATA_WIDTH*2)];
|
||||
m_ram[{addra, 2'd3}] <= dina[((4*B_DATA_WIDTH)-1):(B_DATA_WIDTH*3)];
|
||||
end
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
generate if ((MEM_IO_COMP == 1) && (MEM_RATIO == 8)) begin
|
||||
always @(posedge clka) begin
|
||||
if (wea == 1'b1) begin
|
||||
m_ram[{addra, 3'd0}] <= dina[((1*B_DATA_WIDTH)-1):(B_DATA_WIDTH*0)];
|
||||
m_ram[{addra, 3'd1}] <= dina[((2*B_DATA_WIDTH)-1):(B_DATA_WIDTH*1)];
|
||||
m_ram[{addra, 3'd2}] <= dina[((3*B_DATA_WIDTH)-1):(B_DATA_WIDTH*2)];
|
||||
m_ram[{addra, 3'd3}] <= dina[((4*B_DATA_WIDTH)-1):(B_DATA_WIDTH*3)];
|
||||
m_ram[{addra, 3'd4}] <= dina[((5*B_DATA_WIDTH)-1):(B_DATA_WIDTH*4)];
|
||||
m_ram[{addra, 3'd5}] <= dina[((6*B_DATA_WIDTH)-1):(B_DATA_WIDTH*5)];
|
||||
m_ram[{addra, 3'd6}] <= dina[((7*B_DATA_WIDTH)-1):(B_DATA_WIDTH*6)];
|
||||
m_ram[{addra, 3'd7}] <= dina[((8*B_DATA_WIDTH)-1):(B_DATA_WIDTH*7)];
|
||||
end
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
// read interface options
|
||||
|
||||
generate if ((MEM_IO_COMP == 1) || (MEM_RATIO == 1)) begin
|
||||
always @(posedge clkb) begin
|
||||
doutb <= m_ram[addrb];
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
generate if ((MEM_IO_COMP == 0) && (MEM_RATIO == 2)) begin
|
||||
always @(posedge clkb) begin
|
||||
doutb <= {m_ram[{addrb, 1'd1}],
|
||||
m_ram[{addrb, 1'd0}]};
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
generate if ((MEM_IO_COMP == 0) && (MEM_RATIO == 4)) begin
|
||||
always @(posedge clkb) begin
|
||||
doutb <= {m_ram[{addrb, 2'd3}],
|
||||
m_ram[{addrb, 2'd2}],
|
||||
m_ram[{addrb, 2'd1}],
|
||||
m_ram[{addrb, 2'd0}]};
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
generate if ((MEM_IO_COMP == 0) && (MEM_RATIO == 8)) begin
|
||||
always @(posedge clkb) begin
|
||||
doutb <= {m_ram[{addrb, 3'd7}],
|
||||
m_ram[{addrb, 3'd6}],
|
||||
m_ram[{addrb, 3'd5}],
|
||||
m_ram[{addrb, 3'd4}],
|
||||
m_ram[{addrb, 3'd3}],
|
||||
m_ram[{addrb, 3'd2}],
|
||||
m_ram[{addrb, 3'd1}],
|
||||
m_ram[{addrb, 3'd0}]};
|
||||
end
|
||||
end
|
||||
endgenerate
|
||||
|
||||
endmodule
|
||||
|
||||
|
|
Loading…
Reference in New Issue