diff --git a/library/altera/avl_dacfifo/util_dacfifo_bypass.v b/library/altera/avl_dacfifo/util_dacfifo_bypass.v index 48fc5e73e..dadff99f9 100644 --- a/library/altera/avl_dacfifo/util_dacfifo_bypass.v +++ b/library/altera/avl_dacfifo/util_dacfifo_bypass.v @@ -104,41 +104,10 @@ module util_dacfifo_bypass #( wire [DMA_ADDRESS_WIDTH:0] dma_address_diff_s; wire [DAC_ADDRESS_WIDTH:0] dac_address_diff_s; - // binary to grey conversion - - function [7:0] b2g; - input [7:0] b; - reg [7:0] g; - begin - g[7] = b[7]; - g[6] = b[7] ^ b[6]; - g[5] = b[6] ^ b[5]; - g[4] = b[5] ^ b[4]; - g[3] = b[4] ^ b[3]; - g[2] = b[3] ^ b[2]; - g[1] = b[2] ^ b[1]; - g[0] = b[1] ^ b[0]; - b2g = g; - end - endfunction - - // grey to binary conversion - - function [7:0] g2b; - input [7:0] g; - reg [7:0] b; - begin - b[7] = g[7]; - b[6] = b[7] ^ g[6]; - b[5] = b[6] ^ g[5]; - b[4] = b[5] ^ g[4]; - b[3] = b[4] ^ g[3]; - b[2] = b[3] ^ g[2]; - b[1] = b[2] ^ g[1]; - b[0] = b[1] ^ g[0]; - g2b = b; - end - endfunction + wire [(DMA_ADDRESS_WIDTH-1):0] dma_mem_waddr_b2g_s; + wire [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr_b2g_s; + wire [(DAC_ADDRESS_WIDTH-1):0] dma_mem_raddr_m2_g2b_s; + wire [(DMA_ADDRESS_WIDTH-1):0] dac_mem_waddr_m2_g2b_s; // An asymmetric memory to transfer data from DMAC interface to DAC interface @@ -170,10 +139,16 @@ module util_dacfifo_bypass #( if (dma_mem_wea_s == 1'b1) begin dma_mem_waddr <= dma_mem_waddr + 1'b1; end - dma_mem_waddr_g <= b2g(dma_mem_waddr); + dma_mem_waddr_g <= dma_mem_waddr_b2g_s; end end + ad_b2g #( + .DATA_WIDTH (DMA_ADDRESS_WIDTH)) + i_dma_mem_waddr_b2g ( + .din (dma_mem_waddr), + .dout (dma_mem_waddr_b2g_s)); + // The memory module request data until reaches the high threshold. always @(posedge dma_clk) begin @@ -186,7 +161,7 @@ module util_dacfifo_bypass #( end else begin dma_mem_raddr_m1 <= dac_mem_raddr_g; dma_mem_raddr_m2 <= dma_mem_raddr_m1; - dma_mem_raddr <= g2b(dma_mem_raddr_m2); + dma_mem_raddr <= dma_mem_raddr_m2_g2b_s; dma_mem_addr_diff <= dma_address_diff_s[DMA_ADDRESS_WIDTH-1:0]; if (dma_mem_addr_diff >= DMA_BUF_THRESHOLD_HI) begin dma_ready_out <= 1'b0; @@ -196,6 +171,12 @@ module util_dacfifo_bypass #( end end + ad_g2b #( + .DATA_WIDTH (DAC_ADDRESS_WIDTH)) + i_dma_mem_raddr_g2b ( + .din (dma_mem_raddr_m2), + .dout (dma_mem_raddr_m2_g2b_s)); + // relative address offset on dma domain assign dma_address_diff_s = {1'b1, dma_mem_waddr} - dma_mem_raddr_s; assign dma_mem_raddr_s = (DMA_DATA_WIDTH>DAC_DATA_WIDTH) ? @@ -229,10 +210,16 @@ module util_dacfifo_bypass #( if (dac_mem_rea_s == 1'b1) begin dac_mem_raddr <= dac_mem_raddr + 1'b1; end - dac_mem_raddr_g <= b2g(dac_mem_raddr); + dac_mem_raddr_g <= dac_mem_raddr_b2g_s; end end + ad_b2g #( + .DATA_WIDTH (DAC_ADDRESS_WIDTH)) + i_dac_mem_raddr_b2g ( + .din (dac_mem_raddr), + .dout (dac_mem_raddr_b2g_s)); + // The memory module is ready if it's not empty always @(posedge dac_clk) begin @@ -245,7 +232,7 @@ module util_dacfifo_bypass #( end else begin dac_mem_waddr_m1 <= dma_mem_waddr_g; dac_mem_waddr_m2 <= dac_mem_waddr_m1; - dac_mem_waddr <= g2b(dac_mem_waddr_m2); + dac_mem_waddr <= dac_mem_waddr_m2_g2b_s; dac_mem_addr_diff <= dac_address_diff_s[DAC_ADDRESS_WIDTH-1:0]; if (dac_mem_addr_diff > 0) begin dac_mem_ready <= 1'b1; @@ -255,6 +242,12 @@ module util_dacfifo_bypass #( end end + ad_g2b #( + .DATA_WIDTH (DMA_ADDRESS_WIDTH)) + i_dac_mem_waddr_g2b ( + .din (dac_mem_waddr_m2), + .dout (dac_mem_waddr_m2_g2b_s)); + // define underflow always @(posedge dac_clk) begin diff --git a/library/xilinx/axi_dacfifo/util_dacfifo_bypass.v b/library/xilinx/axi_dacfifo/util_dacfifo_bypass.v index bedf17542..5865ba18a 100644 --- a/library/xilinx/axi_dacfifo/util_dacfifo_bypass.v +++ b/library/xilinx/axi_dacfifo/util_dacfifo_bypass.v @@ -104,41 +104,10 @@ module util_dacfifo_bypass #( wire [DMA_ADDRESS_WIDTH:0] dma_address_diff_s; wire [DAC_ADDRESS_WIDTH:0] dac_address_diff_s; - // binary to grey conversion - - function [7:0] b2g; - input [7:0] b; - reg [7:0] g; - begin - g[7] = b[7]; - g[6] = b[7] ^ b[6]; - g[5] = b[6] ^ b[5]; - g[4] = b[5] ^ b[4]; - g[3] = b[4] ^ b[3]; - g[2] = b[3] ^ b[2]; - g[1] = b[2] ^ b[1]; - g[0] = b[1] ^ b[0]; - b2g = g; - end - endfunction - - // grey to binary conversion - - function [7:0] g2b; - input [7:0] g; - reg [7:0] b; - begin - b[7] = g[7]; - b[6] = b[7] ^ g[6]; - b[5] = b[6] ^ g[5]; - b[4] = b[5] ^ g[4]; - b[3] = b[4] ^ g[3]; - b[2] = b[3] ^ g[2]; - b[1] = b[2] ^ g[1]; - b[0] = b[1] ^ g[0]; - g2b = b; - end - endfunction + wire [(DMA_ADDRESS_WIDTH-1):0] dma_mem_waddr_b2g_s; + wire [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr_b2g_s; + wire [(DAC_ADDRESS_WIDTH-1):0] dma_mem_raddr_m2_g2b_s; + wire [(DMA_ADDRESS_WIDTH-1):0] dac_mem_waddr_m2_g2b_s; // An asymmetric memory to transfer data from DMAC interface to DAC interface @@ -173,12 +142,18 @@ module util_dacfifo_bypass #( dma_mem_waddr_g <= 'h0; end else begin if (dma_mem_wea_s == 1'b1) begin - dma_mem_waddr <= dma_mem_waddr + 1; + dma_mem_waddr <= dma_mem_waddr + 1'b1; end - dma_mem_waddr_g <= b2g(dma_mem_waddr); + dma_mem_waddr_g <= dma_mem_waddr_b2g_s; end end + ad_b2g #( + .DATA_WIDTH (DMA_ADDRESS_WIDTH)) + i_dma_mem_waddr_b2g ( + .din (dma_mem_waddr), + .dout (dma_mem_waddr_b2g_s)); + // The memory module request data until reaches the high threshold. always @(posedge dma_clk) begin @@ -191,7 +166,7 @@ module util_dacfifo_bypass #( end else begin dma_mem_raddr_m1 <= dac_mem_raddr_g; dma_mem_raddr_m2 <= dma_mem_raddr_m1; - dma_mem_raddr <= g2b(dma_mem_raddr_m2); + dma_mem_raddr <= dma_mem_raddr_m2_g2b_s; dma_mem_addr_diff <= dma_address_diff_s[DMA_ADDRESS_WIDTH-1:0]; if (dma_mem_addr_diff >= DMA_BUF_THRESHOLD_HI) begin dma_ready_out <= 1'b0; @@ -201,6 +176,12 @@ module util_dacfifo_bypass #( end end + ad_g2b #( + .DATA_WIDTH (DAC_ADDRESS_WIDTH)) + i_dma_mem_raddr_g2b ( + .din (dma_mem_raddr_m2), + .dout (dma_mem_raddr_m2_g2b_s)); + // relative address offset on dma domain assign dma_address_diff_s = {1'b1, dma_mem_waddr} - dma_mem_raddr_s; assign dma_mem_raddr_s = (DMA_DATA_WIDTH>DAC_DATA_WIDTH) ? @@ -234,10 +215,16 @@ module util_dacfifo_bypass #( if (dac_mem_rea_s == 1'b1) begin dac_mem_raddr <= dac_mem_raddr + 1; end - dac_mem_raddr_g <= b2g(dac_mem_raddr); + dac_mem_raddr_g <= dac_mem_raddr_b2g_s; end end + ad_b2g #( + .DATA_WIDTH (DAC_ADDRESS_WIDTH)) + i_dac_mem_raddr_b2g ( + .din (dac_mem_raddr), + .dout (dac_mem_raddr_b2g_s)); + // The memory module is ready if it's not empty always @(posedge dac_clk) begin @@ -250,7 +237,7 @@ module util_dacfifo_bypass #( end else begin dac_mem_waddr_m1 <= dma_mem_waddr_g; dac_mem_waddr_m2 <= dac_mem_waddr_m1; - dac_mem_waddr <= g2b(dac_mem_waddr_m2); + dac_mem_waddr <= dac_mem_waddr_m2_g2b_s; dac_mem_addr_diff <= dac_address_diff_s[DAC_ADDRESS_WIDTH-1:0]; if (dac_mem_addr_diff > 0) begin dac_mem_ready <= 1'b1; @@ -260,6 +247,12 @@ module util_dacfifo_bypass #( end end + ad_g2b #( + .DATA_WIDTH (DMA_ADDRESS_WIDTH)) + i_dac_mem_waddr_g2b ( + .din (dac_mem_waddr_m2), + .dout (dac_mem_waddr_m2_g2b_s)); + // define underflow always @(posedge dac_clk) begin