pluto_hdl_adi/library/xilinx/axi_dacfifo/axi_dacfifo_dac.v

354 lines
13 KiB
Coq
Raw Normal View History

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsabilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module axi_dacfifo_dac #(
parameter AXI_DATA_WIDTH = 512,
parameter AXI_LENGTH = 15,
parameter DAC_DATA_WIDTH = 64) (
input axi_clk,
input axi_dvalid,
input [(AXI_DATA_WIDTH-1):0] axi_ddata,
output reg axi_dready,
input axi_dlast,
input axi_xfer_req,
input [ 3:0] dma_last_beats,
input dac_clk,
input dac_rst,
input dac_valid,
output [(DAC_DATA_WIDTH-1):0] dac_data,
output dac_xfer_out,
output reg dac_dunf);
localparam MEM_RATIO = AXI_DATA_WIDTH/DAC_DATA_WIDTH;
localparam DAC_ADDRESS_WIDTH = 10;
localparam AXI_ADDRESS_WIDTH = (MEM_RATIO == 1) ? DAC_ADDRESS_WIDTH :
(MEM_RATIO == 2) ? (DAC_ADDRESS_WIDTH - 1) :
(MEM_RATIO == 4) ? (DAC_ADDRESS_WIDTH - 2) :
(DAC_ADDRESS_WIDTH - 3);
localparam AXI_BUF_THRESHOLD_LO = 3 * (AXI_LENGTH+1);
localparam AXI_BUF_THRESHOLD_HI = {(AXI_ADDRESS_WIDTH){1'b1}} - (AXI_LENGTH+1);
localparam DAC_BUF_THRESHOLD_LO = 3 * (AXI_LENGTH+1) * MEM_RATIO;
localparam DAC_BUF_THRESHOLD_HI = {(DAC_ADDRESS_WIDTH){1'b1}} - (AXI_LENGTH+1) * MEM_RATIO;
localparam DAC_ARINCR = (AXI_LENGTH+1) * MEM_RATIO;
// internal registers
reg [(AXI_ADDRESS_WIDTH-1):0] axi_mem_waddr = 'd0;
reg [(AXI_ADDRESS_WIDTH-1):0] axi_mem_laddr = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_waddr_g = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_laddr_g = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_raddr = 'd0;
2016-05-26 11:22:27 +00:00
reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_raddr_m1 = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_raddr_m2 = 'd0;
reg [(AXI_ADDRESS_WIDTH-1):0] axi_mem_addr_diff = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr_g = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_waddr = 'd0;
2016-05-26 11:22:27 +00:00
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_waddr_m1 = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_waddr_m2 = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_laddr = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_laddr_m1 = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_laddr_m2 = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_addr_diff = 'd0;
reg dac_mem_init = 1'b0;
reg dac_mem_init_d = 1'b0;
reg dac_mem_enable = 1'b0;
reg [ 2:0] dac_xfer_req_m = 3'b0;
reg dac_xfer_init = 1'b0;
reg [ 3:0] dac_last_beats = 4'b0;
reg [ 3:0] dac_last_beats_m = 4'b0;
reg [ 3:0] dac_beat_cnt = 4'b0;
reg dac_dlast = 1'b0;
reg dac_dlast_m1 = 1'b0;
reg dac_dlast_m2 = 1'b0;
reg dac_dlast_inmem = 1'b0;
reg dac_mem_valid = 1'b0;
// internal signals
wire [AXI_ADDRESS_WIDTH:0] axi_mem_addr_diff_s;
wire [(AXI_ADDRESS_WIDTH-1):0] axi_mem_raddr_s;
wire [(DAC_ADDRESS_WIDTH-1):0] axi_mem_waddr_s;
wire [(DAC_ADDRESS_WIDTH-1):0] axi_mem_laddr_s;
wire [(DAC_ADDRESS_WIDTH-1):0] axi_mem_waddr_b2g_s;
wire [(DAC_ADDRESS_WIDTH-1):0] axi_mem_laddr_b2g_s;
wire [(DAC_ADDRESS_WIDTH-1):0] axi_mem_raddr_m2_g2b_s;
wire [DAC_ADDRESS_WIDTH:0] dac_mem_addr_diff_s;
wire dac_xfer_init_s;
wire dac_last_axi_beats_s;
wire [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr_b2g_s;
wire [(DAC_ADDRESS_WIDTH-1):0] dac_mem_waddr_m2_g2b_s;
wire [(DAC_ADDRESS_WIDTH-1):0] dac_mem_laddr_m2_g2b_s;
// write interface
always @(posedge axi_clk) begin
if (axi_xfer_req == 1'b0) begin
axi_mem_waddr <= 'd0;
axi_mem_waddr_g <= 'd0;
axi_mem_laddr <= {AXI_ADDRESS_WIDTH{1'b1}};
end else begin
if (axi_dvalid == 1'b1) begin
axi_mem_waddr <= axi_mem_waddr + 1'b1;
axi_mem_laddr <= (axi_dlast == 1'b1) ? axi_mem_waddr : axi_mem_laddr;
end
axi_mem_waddr_g <= axi_mem_waddr_b2g_s;
axi_mem_laddr_g <= axi_mem_laddr_b2g_s;
end
end
ad_b2g # (
.DATA_WIDTH(DAC_MEM_ADDRESS_WIDTH)
) i_axi_mem_waddr_b2g (
.din (axi_mem_waddr_s),
.dout (axi_mem_waddr_b2g_s));
ad_b2g # (
.DATA_WIDTH(DAC_MEM_ADDRESS_WIDTH)
) i_axi_mem_laddr_b2g (
.din (axi_mem_laddr_s),
.dout (axi_mem_laddr_b2g_s));
// scale the axi_mem_* addresses
assign axi_mem_raddr_s = (MEM_RATIO == 1) ? axi_mem_raddr :
(MEM_RATIO == 2) ? axi_mem_raddr[(DAC_ADDRESS_WIDTH-1):1] :
(MEM_RATIO == 4) ? axi_mem_raddr[(DAC_ADDRESS_WIDTH-1):2] :
axi_mem_raddr[(DAC_ADDRESS_WIDTH-1):3];
assign axi_mem_waddr_s = (MEM_RATIO == 1) ? axi_mem_waddr :
(MEM_RATIO == 2) ? {axi_mem_waddr, 1'b0} :
(MEM_RATIO == 4) ? {axi_mem_waddr, 2'b0} :
{axi_mem_waddr, 3'b0};
assign axi_mem_laddr_s = (MEM_RATIO == 1) ? axi_mem_laddr :
(MEM_RATIO == 2) ? {axi_mem_laddr, 1'b0} :
(MEM_RATIO == 4) ? {axi_mem_laddr, 2'b0} :
{axi_mem_laddr, 3'b0};
// incomming data flow control
assign axi_mem_addr_diff_s = {1'b1, axi_mem_waddr} - axi_mem_raddr_s;
always @(posedge axi_clk) begin
if (axi_xfer_req == 1'b0) begin
axi_mem_addr_diff <= 'd0;
axi_mem_raddr <= 'd0;
2016-05-26 11:22:27 +00:00
axi_mem_raddr_m1 <= 'd0;
axi_mem_raddr_m2 <= 'd0;
axi_dready <= 'd0;
end else begin
2016-05-26 11:22:27 +00:00
axi_mem_raddr_m1 <= dac_mem_raddr_g;
axi_mem_raddr_m2 <= axi_mem_raddr_m1;
axi_mem_raddr <= axi_mem_raddr_m2_g2b_s;
axi_mem_addr_diff <= axi_mem_addr_diff_s[AXI_ADDRESS_WIDTH-1:0];
if (axi_mem_addr_diff >= AXI_BUF_THRESHOLD_HI) begin
axi_dready <= 1'b0;
end else begin
axi_dready <= 1'b1;
end
end
end
ad_g2b #(
.DATA_WIDTH(DAC_MEM_ADDRESS_WIDTH)
) i_axi_mem_raddr_m2_g2b (
.din (axi_mem_raddr_m2),
.dout (axi_mem_raddr_m2_g2b_s));
// CDC for xfer_req signal
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_xfer_req_m <= 3'b0;
end else begin
dac_xfer_req_m <= {dac_xfer_req_m[1:0], axi_xfer_req};
end
end
assign dac_xfer_out = dac_xfer_req_m[2];
assign dac_xfer_init_s = ~dac_xfer_req_m[2] & dac_xfer_req_m[1];
// read interface
always @(posedge dac_clk) begin
if (dac_xfer_out == 1'b0) begin
dac_mem_init <= 1'b0;
dac_mem_init_d <= 1'b0;
dac_mem_enable <= 1'b0;
end else begin
if (dac_xfer_init == 1'b1) begin
dac_mem_init <= 1'b1;
end
if ((dac_mem_init == 1'b1) && (dac_mem_addr_diff > DAC_BUF_THRESHOLD_LO)) begin
dac_mem_init <= 1'b0;
end
dac_mem_init_d <= dac_mem_init;
// memory is ready when the initial fill up is done
dac_mem_enable <= (dac_mem_init_d & ~dac_mem_init) ? 1'b1 : dac_mem_enable;
end
dac_xfer_init <= dac_xfer_init_s;
end
always @(posedge dac_clk) begin
if (dac_xfer_out == 1'b0) begin
dac_mem_waddr <= 'b0;
2016-05-26 11:22:27 +00:00
dac_mem_waddr_m1 <= 'b0;
dac_mem_waddr_m2 <= 'b0;
dac_mem_laddr <= 'b0;
dac_mem_laddr_m1 <= 'b0;
dac_mem_laddr_m2 <= 'b0;
dac_dlast <= 1'b0;
dac_dlast_m1 <= 1'b0;
dac_dlast_m2 <= 1'b0;
end else begin
2016-05-26 11:22:27 +00:00
dac_mem_waddr_m1 <= axi_mem_waddr_g;
dac_mem_waddr_m2 <= dac_mem_waddr_m1;
dac_mem_waddr <= dac_mem_waddr_m2_g2b_s;
dac_mem_laddr_m1 <= axi_mem_laddr_g;
dac_mem_laddr_m2 <= dac_mem_laddr_m1;
dac_mem_laddr <= dac_mem_laddr_m2_g2b_s;
dac_dlast_m1 <= axi_dlast;
dac_dlast_m2 <= dac_dlast_m1;
dac_dlast <= dac_dlast_m2;
end
end
ad_g2b #(
.DATA_WIDTH(DAC_MEM_ADDRESS_WIDTH)
) i_dac_mem_waddr_m2_g2b (
.din (dac_mem_waddr_m2),
.dout (dac_mem_waddr_m2_g2b_s));
ad_g2b #(
.DATA_WIDTH(DAC_MEM_ADDRESS_WIDTH)
) i_dac_mem_laddr_m2_g2b (
.din (dac_mem_laddr_m2),
.dout (dac_mem_laddr_m2_g2b_s));
assign dac_mem_addr_diff_s = {1'b1, dac_mem_waddr} - dac_mem_raddr;
always @(posedge dac_clk) begin
dac_mem_valid <= (dac_mem_enable) ? dac_valid : 1'b0;
end
// CDC for the dma_last_beats
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_last_beats <= 32'b0;
dac_last_beats_m <= 32'b0;
end else begin
dac_last_beats_m <= dma_last_beats;
dac_last_beats <= dac_last_beats_m;
end
end
// If the MEM_RATIO is grater than one, it can happen that not all the DAC beats from
// an AXI beat are valid. In this case the invalid data is dropped.
// The axi_dlast indicates the last AXI beat. The valid number of DAC beats on the last AXI beat
// commes from the AXI write module. (axi_dacfifo_wr.v)
assign dac_last_axi_beats_s = ((dac_dlast_inmem == 1'b1) && (dac_mem_raddr >= dac_mem_laddr) && (dac_mem_raddr < dac_mem_laddr + MEM_RATIO)) ? 1'b1 : 1'b0;
always @(posedge dac_clk) begin
if (dac_xfer_out == 1'b0) begin
dac_mem_raddr <= 'd0;
dac_beat_cnt <= 'd0;
dac_dlast_inmem <= 1'b0;
end else begin
if (dac_dlast == 1'b1) begin
dac_dlast_inmem <= 1'b1;
end else if (dac_mem_raddr == dac_mem_laddr + MEM_RATIO) begin
dac_dlast_inmem <= 1'b0;
end
if (dac_mem_valid == 1'b1) begin
dac_beat_cnt <= ((dac_beat_cnt >= MEM_RATIO-1) ||
((dac_last_beats > 1'b1) && (dac_last_axi_beats_s > 1'b0) && (dac_beat_cnt == dac_last_beats-1))) ? 0 : dac_beat_cnt + 1;
dac_mem_raddr <= ((dac_last_axi_beats_s) && (dac_beat_cnt == dac_last_beats-1)) ? (dac_mem_laddr + MEM_RATIO) : dac_mem_raddr + 1'b1;
end
dac_mem_raddr_g <= dac_mem_raddr_b2g_s;
end
end
ad_b2g # (
.DATA_WIDTH(DAC_MEM_ADDRESS_WIDTH)
) i_dac_mem_raddr_b2g (
.din (dac_mem_raddr),
.dout (dac_mem_raddr_b2g_s));
// underflow generation, there is no overflow
always @(posedge dac_clk) begin
if(dac_xfer_out == 1'b0) begin
dac_mem_addr_diff <= 'b0;
dac_dunf <= 1'b0;
end else begin
dac_mem_addr_diff <= dac_mem_addr_diff_s[DAC_ADDRESS_WIDTH-1:0];
2016-05-26 11:25:36 +00:00
dac_dunf <= (dac_mem_addr_diff == 1'b0) ? 1'b1 : 1'b0;
end
end
// instantiations
ad_mem_asym #(
.A_ADDRESS_WIDTH (AXI_ADDRESS_WIDTH),
.A_DATA_WIDTH (AXI_DATA_WIDTH),
.B_ADDRESS_WIDTH (DAC_ADDRESS_WIDTH),
.B_DATA_WIDTH (DAC_DATA_WIDTH))
i_mem_asym (
.clka (axi_clk),
.wea (axi_dvalid),
.addra (axi_mem_waddr),
.dina (axi_ddata),
.clkb (dac_clk),
.addrb (dac_mem_raddr),
.doutb (dac_data));
endmodule
// ***************************************************************************
// ***************************************************************************