pluto_hdl_adi/library/xilinx/common/ad_data_in.v

219 lines
6.2 KiB
Coq
Raw Normal View History

2017-07-24 20:25:24 +00:00
// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
2018-03-14 14:45:47 +00:00
// freedoms and responsibilities that he or she has by using this source/core.
2017-07-24 20:25:24 +00:00
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module ad_data_in #(
parameter SINGLE_ENDED = 0,
parameter FPGA_TECHNOLOGY = 0,
parameter IDDR_CLK_EDGE ="SAME_EDGE",
2017-07-24 20:25:24 +00:00
parameter IODELAY_ENABLE = 1,
parameter IODELAY_CTRL = 0,
parameter IODELAY_GROUP = "dev_if_delay_group",
parameter REFCLK_FREQUENCY = 200
) (
2017-07-24 20:25:24 +00:00
// data interface
input rx_clk,
input rx_data_in_p,
input rx_data_in_n,
output rx_data_p,
output rx_data_n,
// delay-data interface
input up_clk,
input up_dld,
input [ 4:0] up_dwdata,
output [ 4:0] up_drdata,
// delay-cntrl interface
input delay_clk,
input delay_rst,
output delay_locked
);
2017-07-24 20:25:24 +00:00
// internal parameters
localparam NONE = -1;
localparam SEVEN_SERIES = 1;
localparam ULTRASCALE = 2;
localparam ULTRASCALE_PLUS = 3;
2017-07-24 20:25:24 +00:00
localparam IODELAY_CTRL_ENABLED = (IODELAY_ENABLE == 1) ? IODELAY_CTRL : 0;
localparam IODELAY_CTRL_SIM_DEVICE = (FPGA_TECHNOLOGY == ULTRASCALE_PLUS) ? "ULTRASCALE" :
(FPGA_TECHNOLOGY == ULTRASCALE) ? "ULTRASCALE" : "7SERIES";
2017-07-24 20:25:24 +00:00
localparam IODELAY_FPGA_TECHNOLOGY = (IODELAY_ENABLE == 1) ? FPGA_TECHNOLOGY : NONE;
localparam IODELAY_SIM_DEVICE = (FPGA_TECHNOLOGY == ULTRASCALE_PLUS) ? "ULTRASCALE_PLUS" :
(FPGA_TECHNOLOGY == ULTRASCALE) ? "ULTRASCALE" : "7SERIES";
2017-07-24 20:25:24 +00:00
// internal signals
wire rx_data_ibuf_s;
wire rx_data_idelay_s;
wire [ 8:0] up_drdata_s;
// delay controller
generate
if (IODELAY_CTRL_ENABLED == 0) begin
assign delay_locked = 1'b1;
2017-07-24 20:25:24 +00:00
end else begin
(* IODELAY_GROUP = IODELAY_GROUP *)
IDELAYCTRL #(
.SIM_DEVICE (IODELAY_CTRL_SIM_DEVICE)
) i_delay_ctrl (
.RST (delay_rst),
.REFCLK (delay_clk),
.RDY (delay_locked));
2017-07-24 20:25:24 +00:00
end
endgenerate
// receive data interface, ibuf -> idelay -> iddr
generate
if (SINGLE_ENDED == 1) begin
IBUF i_rx_data_ibuf (
.I (rx_data_in_p),
.O (rx_data_ibuf_s));
2017-07-24 20:25:24 +00:00
end else begin
IBUFDS i_rx_data_ibuf (
.I (rx_data_in_p),
.IB (rx_data_in_n),
.O (rx_data_ibuf_s));
2017-07-24 20:25:24 +00:00
end
endgenerate
// idelay
generate
if (IODELAY_FPGA_TECHNOLOGY == SEVEN_SERIES) begin
(* IODELAY_GROUP = IODELAY_GROUP *)
IDELAYE2 #(
.CINVCTRL_SEL ("FALSE"),
.DELAY_SRC ("IDATAIN"),
.HIGH_PERFORMANCE_MODE ("FALSE"),
.IDELAY_TYPE ("VAR_LOAD"),
.IDELAY_VALUE (0),
.REFCLK_FREQUENCY (REFCLK_FREQUENCY),
.PIPE_SEL ("FALSE"),
.SIGNAL_PATTERN ("DATA")
) i_rx_data_idelay (
.CE (1'b0),
.INC (1'b0),
.DATAIN (1'b0),
.LDPIPEEN (1'b0),
.CINVCTRL (1'b0),
.REGRST (1'b0),
.C (up_clk),
.IDATAIN (rx_data_ibuf_s),
.DATAOUT (rx_data_idelay_s),
.LD (up_dld),
.CNTVALUEIN (up_dwdata),
.CNTVALUEOUT (up_drdata));
2017-07-24 20:25:24 +00:00
end
endgenerate
generate
if ((IODELAY_FPGA_TECHNOLOGY == ULTRASCALE) || (IODELAY_FPGA_TECHNOLOGY == ULTRASCALE_PLUS)) begin
assign up_drdata = up_drdata_s[8:4];
(* IODELAY_GROUP = IODELAY_GROUP *)
IDELAYE3 #(
.SIM_DEVICE (IODELAY_SIM_DEVICE),
.DELAY_SRC ("IDATAIN"),
.DELAY_TYPE ("VAR_LOAD"),
.REFCLK_FREQUENCY (REFCLK_FREQUENCY),
.DELAY_FORMAT ("COUNT")
) i_rx_data_idelay (
.CASC_RETURN (1'b0),
.CASC_IN (1'b0),
.CASC_OUT (),
.CE (1'b0),
.CLK (up_clk),
.INC (1'b0),
.LOAD (up_dld),
.CNTVALUEIN ({up_dwdata, 4'd0}),
.CNTVALUEOUT (up_drdata_s),
.DATAIN (1'b0),
.IDATAIN (rx_data_ibuf_s),
.DATAOUT (rx_data_idelay_s),
.RST (1'b0),
.EN_VTC (~up_dld));
2017-07-24 20:25:24 +00:00
end
endgenerate
generate
if (IODELAY_FPGA_TECHNOLOGY == NONE) begin
assign rx_data_idelay_s = rx_data_ibuf_s;
assign up_drdata = 5'd0;
2017-07-24 20:25:24 +00:00
end
endgenerate
// iddr
generate
if ((FPGA_TECHNOLOGY == ULTRASCALE) || (FPGA_TECHNOLOGY == ULTRASCALE_PLUS)) begin
IDDRE1 #(
.DDR_CLK_EDGE (IDDR_CLK_EDGE)
) i_rx_data_iddr (
.R (1'b0),
.C (rx_clk),
.CB (~rx_clk),
.D (rx_data_idelay_s),
.Q1 (rx_data_p),
.Q2 (rx_data_n));
2017-07-24 20:25:24 +00:00
end
endgenerate
generate
if (FPGA_TECHNOLOGY == SEVEN_SERIES) begin
IDDR #(
.DDR_CLK_EDGE (IDDR_CLK_EDGE)
) i_rx_data_iddr (
.CE (1'b1),
.R (1'b0),
.S (1'b0),
.C (rx_clk),
.D (rx_data_idelay_s),
.Q1 (rx_data_p),
.Q2 (rx_data_n));
2017-07-24 20:25:24 +00:00
end
endgenerate
endmodule