pluto_hdl_adi/library/util_dacfifo/util_dacfifo.v

331 lines
10 KiB
Coq
Raw Normal View History

2015-04-07 19:55:29 +00:00
// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
2015-04-07 19:55:29 +00:00
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
2018-03-14 14:45:47 +00:00
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
2015-04-07 19:55:29 +00:00
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
2015-04-07 19:55:29 +00:00
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
2015-04-07 19:55:29 +00:00
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module util_dacfifo #(
2015-04-07 19:55:29 +00:00
parameter ADDRESS_WIDTH = 6,
parameter DATA_WIDTH = 128) (
// DMA interface
input dma_clk,
input dma_rst,
input dma_valid,
input [(DATA_WIDTH-1):0] dma_data,
output reg dma_ready,
input dma_xfer_req,
input dma_xfer_last,
// DAC interface
2015-04-07 19:55:29 +00:00
input dac_clk,
input dac_rst,
input dac_valid,
output reg [(DATA_WIDTH-1):0] dac_data,
output reg dac_dunf,
output reg dac_xfer_out,
input bypass);
2015-04-07 19:55:29 +00:00
localparam FIFO_THRESHOLD_HI = {(ADDRESS_WIDTH){1'b1}} - 4;
// internal registers
2015-09-24 08:22:22 +00:00
reg [(ADDRESS_WIDTH-1):0] dma_waddr = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_waddr_g = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_lastaddr_g = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_raddr_m1 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_raddr_m2 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_raddr = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_addr_diff = 'b0;
reg dma_ready_fifo = 1'b0;
reg dma_ready_bypass = 1'b0;
reg dma_bypass = 1'b0;
reg dma_bypass_m1 = 1'b0;
reg dma_xfer_out_fifo = 1'b0;
reg dma_xfer_out_bypass = 1'b0;
2015-09-24 08:22:22 +00:00
reg [(ADDRESS_WIDTH-1):0] dac_raddr = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_raddr_g = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_waddr = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_waddr_m1 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_waddr_m2 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_addr_diff = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr_m1 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr_m2 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr = 'b0;
reg dac_mem_ready = 1'b0;
reg dac_xfer_out_fifo = 1'b0;
reg dac_xfer_out_fifo_m1 = 1'b0;
reg dac_xfer_out_bypass = 1'b0;
reg dac_xfer_out_bypass_m1 = 1'b0;
reg dac_bypass = 1'b0;
reg dac_bypass_m1 = 1'b0;
// internal wires
wire dma_wren_s;
2015-09-24 08:22:22 +00:00
wire [(DATA_WIDTH-1):0] dac_data_s;
wire [ADDRESS_WIDTH:0] dma_addr_diff_s;
wire [ADDRESS_WIDTH:0] dac_addr_diff_s;
wire [(ADDRESS_WIDTH-1):0] dma_waddr_b2g_s;
wire [(ADDRESS_WIDTH-1):0] dac_raddr_b2g_s;
wire [(ADDRESS_WIDTH-1):0] dma_raddr_g2b_s;
wire [(ADDRESS_WIDTH-1):0] dac_waddr_g2b_s;
wire [(ADDRESS_WIDTH-1):0] dac_lastaddr_g2b_s;
wire dac_mem_ren_s;
// DMA / Write interface
// fifo is always ready, if it's not in bypass mode
always @(posedge dma_clk) begin
if(dma_rst == 1'b1) begin
dma_ready_fifo <= 1'b0;
2015-04-07 19:55:29 +00:00
end else begin
dma_ready_fifo <= 1'b1;
end
end
2015-04-07 19:55:29 +00:00
// if bypass is enabled, fifo request data until reaches the high threshold.
assign dma_addr_diff_s = {1'b1, dma_waddr} - dma_raddr;
always @(posedge dma_clk) begin
if (dma_rst == 1'b1) begin
dma_addr_diff <= 'b0;
dma_raddr_m1 <= 'b0;
dma_raddr_m2 <= 'b0;
dma_raddr <= 'b0;
dma_ready_bypass <= 1'b0;
end else begin
dma_raddr_m1 <= dac_raddr_g;
dma_raddr_m2 <= dma_raddr_m1;
dma_raddr <= dma_raddr_g2b_s;
dma_addr_diff <= dma_addr_diff_s[ADDRESS_WIDTH-1:0];
if (dma_addr_diff >= FIFO_THRESHOLD_HI) begin
dma_ready_bypass <= 1'b0;
end else begin
dma_ready_bypass <= 1'b1;
end
end
end
ad_g2b #(
.DATA_WIDTH (ADDRESS_WIDTH))
i_dma_raddr_g2b (
.din (dma_raddr_m2),
.dout (dma_raddr_g2b_s));
// write address generation
assign dma_wren_s = dma_valid & dma_ready;
always @(posedge dma_clk) begin
if(dma_rst == 1'b1) begin
dma_waddr <= 'b0;
dma_waddr_g <= 'b0;
dma_xfer_out_fifo <= 1'b0;
dma_xfer_out_bypass <= 1'b0;
2015-04-07 19:55:29 +00:00
end else begin
if (dma_wren_s == 1'b1) begin
dma_waddr <= dma_waddr + 1'b1;
dma_xfer_out_fifo <= 1'b0;
2015-04-07 19:55:29 +00:00
end
if (dma_xfer_last == 1'b1) begin
dma_waddr <= 'b0;
dma_xfer_out_fifo <= 1'b1;
end
dma_waddr_g <= dma_waddr_b2g_s;
dma_xfer_out_bypass <= dma_xfer_req;
2015-04-07 19:55:29 +00:00
end
end
ad_b2g #(
.DATA_WIDTH (ADDRESS_WIDTH))
i_dma_waddr_b2g (
.din (dma_waddr),
.dout (dma_waddr_b2g_s));
// save the last write address
2015-04-07 19:55:29 +00:00
always @(posedge dma_clk) begin
if (dma_rst == 1'b1) begin
dma_lastaddr_g <= 'b0;
end else begin
if (dma_bypass == 1'b0) begin
dma_lastaddr_g <= (dma_xfer_last == 1'b1)? dma_waddr_b2g_s : dma_lastaddr_g;
end
end
end
// DAC / Read interface
// The memory module is ready if it's not empty
assign dac_addr_diff_s = {1'b1, dac_waddr} - dac_raddr;
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_addr_diff <= 'b0;
dac_waddr_m1 <= 'b0;
dac_waddr_m2 <= 'b0;
dac_waddr <= 'b0;
dac_mem_ready <= 1'b0;
end else begin
dac_waddr_m1 <= dma_waddr_g;
dac_waddr_m2 <= dac_waddr_m1;
dac_waddr <= dac_waddr_g2b_s;
dac_addr_diff <= dac_addr_diff_s[ADDRESS_WIDTH-1:0];
if (dac_addr_diff > 0) begin
dac_mem_ready <= 1'b1;
end else begin
dac_mem_ready <= 1'b0;
end
end
end
ad_g2b #(
.DATA_WIDTH (ADDRESS_WIDTH))
i_dac_waddr_g2b (
.din (dac_waddr_m2),
.dout (dac_waddr_g2b_s));
// sync lastaddr to dac clock domain
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_lastaddr_m1 <= 1'b0;
dac_lastaddr_m2 <= 1'b0;
dac_xfer_out_fifo_m1 <= 1'b0;
dac_xfer_out_fifo <= 1'b0;
dac_xfer_out_bypass_m1 <= 1'b0;
dac_xfer_out_bypass <= 1'b0;
end else begin
dac_lastaddr_m1 <= dma_lastaddr_g;
dac_lastaddr_m2 <= dac_lastaddr_m1;
dac_lastaddr <= dac_lastaddr_g2b_s;
dac_xfer_out_fifo_m1 <= dma_xfer_out_fifo;
dac_xfer_out_fifo <= dac_xfer_out_fifo_m1;
dac_xfer_out_bypass_m1 <= dma_xfer_out_bypass;
dac_xfer_out_bypass <= dac_xfer_out_bypass_m1;
end
end
ad_g2b #(
.DATA_WIDTH (ADDRESS_WIDTH))
i_dac_lastaddr_g2b (
.din (dac_lastaddr_m2),
.dout (dac_lastaddr_g2b_s));
// generate dac read address
assign dac_mem_ren_s = (dac_bypass == 1'b1) ? (dac_valid & dac_mem_ready) : (dac_valid & dac_xfer_out_fifo);
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_raddr <= 'b0;
dac_raddr_g <= 'b0;
end else begin
if (dac_mem_ren_s == 1'b1) begin
if (dac_lastaddr == 'b0 || dac_raddr < dac_lastaddr) begin
dac_raddr <= dac_raddr + 1'b1;
end else begin
dac_raddr <= 'b0;
end
end
dac_raddr_g <= dac_raddr_b2g_s;
end
end
2015-04-07 19:55:29 +00:00
ad_b2g #(
.DATA_WIDTH (ADDRESS_WIDTH))
i_dac_raddr_b2g (
.din (dac_raddr),
.dout (dac_raddr_b2g_s));
// memory instantiation
2015-04-07 19:55:29 +00:00
ad_mem #(
hdl/library: Update the IP parameters The following IP parameters were renamed: PCORE_ID --> ID PCORE_DEVTYPE --> DEVICE_TYPE PCORE_IODELAY_GROUP --> IO_DELAY_GROUP CH_DW --> CHANNEL_DATA_WIDTH CH_CNT --> NUM_OF_CHANNELS PCORE_BUFTYPE --> DEVICE_TYPE PCORE_ADC_DP_DISABLE --> ADC_DATAPATH_DISABLE CHID --> CHANNEL_ID PCORE_DEVICE_TYPE --> DEVICE_TYPE PCORE_MMCM_BUFIO_N --> MMCM_BUFIO_N PCORE_SERDES_DDR_N --> SERDES_DDR_N PCORE_DAC_DP_DISABLE --> DAC_DATAPATH_DISABLE DP_DISABLE --> DATAPATH_DISABLE PCORE_DAC_IODELAY_ENABLE --> DAC_IODELAY_ENABLE C_BIG_ENDIAN --> BIG_ENDIAN C_M_DATA_WIDTH --> MASTER_DATA_WIDTH C_S_DATA_WIDTH --> SLAVE_DATA_WIDTH NUM_CHANNELS --> NUM_OF_CHANNELS CHANNELS --> NUM_OF_CHANNELS PCORE_4L_2L_N -->QUAD_OR_DUAL_N C_ADDRESS_WIDTH --> ADDRESS_WIDTH C_DATA_WIDTH --> DATA_WIDTH C_CLKS_ASYNC --> CLKS_ASYNC PCORE_QUAD_DUAL_N --> QUAD_DUAL_N NUM_CS --> NUM_OF_CS PCORE_DAC_CHANNEL_ID --> DAC_CHANNEL_ID PCORE_ADC_CHANNEL_ID --> ADC_CHANNEL_ID PCORE_CLK0_DIV --> CLK0_DIV PCORE_CLK1_DIV --> CLK1_DIV PCORE_CLKIN_PERIOD --> CLKIN_PERIOD PCORE_VCO_DIV --> VCO_DIV PCORE_Cr_Cb_N --> CR_CB_N PCORE_VCO_MUL --> VCO_MUL PCORE_EMBEDDED_SYNC --> EMBEDDED_SYNC PCORE_AXI_ID_WIDTH --> AXI_ID_WIDTH PCORE_ADDR_WIDTH --> ADDRESS_WIDTH DADATA_WIDTH --> DATA_WIDTH NUM_OF_NUM_OF_CHANNEL --> NUM_OF_CHANNELS DEBOUNCER_LEN --> DEBOUNCER_LENGTH ADDR_WIDTH --> ADDRESS_WIDTH C_S_AXIS_REGISTERED --> S_AXIS_REGISTERED Cr_Cb_N --> CR_CB_N ADDATA_WIDTH --> ADC_DATA_WIDTH BUFTYPE --> DEVICE_TYPE NUM_BITS --> NUM_OF_BITS WIDTH_A --> A_DATA_WIDTH WIDTH_B --> B_DATA_WIDTH CH_OCNT --> NUM_OF_CHANNELS_O M_CNT --> NUM_OF_CHANNELS_M P_CNT --> NUM_OF_CHANNELS_P CH_ICNT --> NUM_OF_CHANNELS_I CH_MCNT --> NUM_OF_CHANNELS_M 4L_2L_N --> QUAD_OR_DUAL_N SPI_CLK_ASYNC --> ASYNC_SPI_CLK MMCM_BUFIO_N --> MMCM_OR_BUFIO_N SERDES_DDR_N --> SERDES_OR_DDR_N CLK_ASYNC --> ASYNC_CLK CLKS_ASYNC --> ASYNC_CLK SERDES --> SERDES_OR_DDR_N GTH_GTX_N --> GTH_OR_GTX_N IF_TYPE --> DDR_OR_SDR_N PARALLEL_WIDTH --> DATA_WIDTH ADD_SUB --> ADD_OR_SUB_N A_WIDTH --> A_DATA_WIDTH CONST_VALUE --> B_DATA_VALUE IO_BASEADDR --> BASE_ADDRESS IO_WIDTH --> DATA_WIDTH QUAD_DUAL_N --> QUAD_OR_DUAL_N AXI_ADDRLIMIT --> AXI_ADDRESS_LIMIT ADDRESS_A_DATA_WIDTH --> A_ADDRESS_WIDTH ADDRESS_B_DATA_WIDTH --> B_ADDRESS_WIDTH MODE_OF_ENABLE --> CONTROL_TYPE CONTROL_TYPE --> LEVEL_OR_PULSE_N IQSEL --> Q_OR_I_N MMCM --> MMCM_OR_BUFR_N
2015-08-19 11:11:47 +00:00
.ADDRESS_WIDTH (ADDRESS_WIDTH),
.DATA_WIDTH (DATA_WIDTH))
2015-04-07 19:55:29 +00:00
i_mem_fifo (
.clka (dma_clk),
.wea (dma_wren_s),
.addra (dma_waddr),
.dina (dma_data),
.clkb (dac_clk),
.reb (1'b1),
.addrb (dac_raddr),
.doutb (dac_data_s));
2015-04-07 19:55:29 +00:00
// define underflow
// underflow make sense just if bypass is enabled
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_dunf <= 1'b0;
end else begin
dac_dunf <= (dac_bypass == 1'b1) ? (dac_valid & dac_xfer_out_bypass & ~dac_mem_ren_s) : 1'b0;
end
end
// output logic
always @(posedge dma_clk) begin
dma_bypass_m1 <= bypass;
dma_bypass <= dma_bypass_m1;
end
always @(posedge dac_clk) begin
dac_bypass_m1 <= bypass;
dac_bypass <= dac_bypass_m1;
end
always @(posedge dma_clk) begin
dma_ready <= (dma_bypass == 1'b1) ? dma_ready_bypass : dma_ready_fifo;
end
always @(posedge dac_clk) begin
dac_data <= dac_data_s;
dac_xfer_out <= (dac_bypass == 1'b1) ? dac_xfer_out_bypass : dac_xfer_out_fifo;
end
2015-04-07 19:55:29 +00:00
endmodule