pluto_hdl_adi/library/axi_dmac/dest_axi_mm.v

194 lines
6.4 KiB
Coq
Raw Normal View History

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
2018-03-14 14:45:47 +00:00
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module dest_axi_mm #(
parameter ID_WIDTH = 3,
parameter DMA_DATA_WIDTH = 64,
parameter DMA_ADDR_WIDTH = 32,
parameter BYTES_PER_BEAT_WIDTH = $clog2(DMA_DATA_WIDTH/8),
parameter BEATS_PER_BURST_WIDTH = 4,
parameter MAX_BYTES_PER_BURST = 128,
parameter BYTES_PER_BURST_WIDTH = $clog2(MAX_BYTES_PER_BURST),
parameter AXI_LENGTH_WIDTH = 8,
parameter CACHE_COHERENT = 0)(
input m_axi_aclk,
input m_axi_aresetn,
input req_valid,
output req_ready,
input [DMA_ADDR_WIDTH-1:BYTES_PER_BEAT_WIDTH] req_address,
input bl_valid,
output bl_ready,
input [BEATS_PER_BURST_WIDTH-1:0] measured_last_burst_length,
input enable,
output enabled,
output response_valid,
input response_ready,
output [1:0] response_resp,
output response_resp_eot,
output response_resp_partial,
output [BYTES_PER_BURST_WIDTH-1:0] response_data_burst_length,
input [ID_WIDTH-1:0] request_id,
output [ID_WIDTH-1:0] response_id,
output [ID_WIDTH-1:0] address_id,
input address_eot,
input response_eot,
input fifo_valid,
output fifo_ready,
input [DMA_DATA_WIDTH-1:0] fifo_data,
input [DMA_DATA_WIDTH/8-1:0] fifo_strb,
input fifo_last,
input [BYTES_PER_BURST_WIDTH-1:0] dest_burst_info_length,
input dest_burst_info_partial,
input [ID_WIDTH-1:0] dest_burst_info_id,
input dest_burst_info_write,
// Write address
input m_axi_awready,
output m_axi_awvalid,
output [DMA_ADDR_WIDTH-1:0] m_axi_awaddr,
output [AXI_LENGTH_WIDTH-1:0] m_axi_awlen,
output [ 2:0] m_axi_awsize,
output [ 1:0] m_axi_awburst,
output [ 2:0] m_axi_awprot,
output [ 3:0] m_axi_awcache,
// Write data
output [DMA_DATA_WIDTH-1:0] m_axi_wdata,
output [(DMA_DATA_WIDTH/8)-1:0] m_axi_wstrb,
input m_axi_wready,
output m_axi_wvalid,
output m_axi_wlast,
// Write response
input m_axi_bvalid,
input [ 1:0] m_axi_bresp,
output m_axi_bready
);
wire address_enabled;
address_generator #(
.ID_WIDTH(ID_WIDTH),
.BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH),
.BYTES_PER_BEAT_WIDTH(BYTES_PER_BEAT_WIDTH),
.DMA_DATA_WIDTH(DMA_DATA_WIDTH),
.LENGTH_WIDTH(AXI_LENGTH_WIDTH),
.DMA_ADDR_WIDTH(DMA_ADDR_WIDTH),
.CACHE_COHERENT(CACHE_COHERENT)
) i_addr_gen (
.clk(m_axi_aclk),
.resetn(m_axi_aresetn),
.enable(enable),
.enabled(address_enabled),
.id(address_id),
.request_id(request_id),
.req_valid(req_valid),
.req_ready(req_ready),
.req_address(req_address),
.bl_valid(bl_valid),
.bl_ready(bl_ready),
.measured_last_burst_length(measured_last_burst_length),
.eot(address_eot),
.addr_ready(m_axi_awready),
.addr_valid(m_axi_awvalid),
.addr(m_axi_awaddr),
.len(m_axi_awlen),
.size(m_axi_awsize),
.burst(m_axi_awburst),
.prot(m_axi_awprot),
.cache(m_axi_awcache)
);
assign m_axi_wvalid = fifo_valid;
assign fifo_ready = m_axi_wready;
assign m_axi_wlast = fifo_last;
assign m_axi_wdata = fifo_data;
assign m_axi_wstrb = fifo_strb;
response_handler #(
.ID_WIDTH(ID_WIDTH)
) i_response_handler (
.clk(m_axi_aclk),
.resetn(m_axi_aresetn),
.bvalid(m_axi_bvalid),
.bready(m_axi_bready),
.bresp(m_axi_bresp),
.enable(address_enabled),
.enabled(enabled),
.id(response_id),
.request_id(address_id),
.eot(response_eot),
.resp_valid(response_valid),
.resp_ready(response_ready),
.resp_resp(response_resp),
.resp_eot(response_resp_eot)
);
reg [BYTES_PER_BURST_WIDTH+1-1:0] bl_mem [0:2**(ID_WIDTH)-1];
assign {response_resp_partial,
response_data_burst_length} = bl_mem[response_id];
always @(posedge m_axi_aclk) begin
if (dest_burst_info_write) begin
bl_mem[dest_burst_info_id] <= {dest_burst_info_partial,
dest_burst_info_length};
end
end
endmodule