pluto_hdl_adi/library/axi_adrv9001/adrv9001_tx.v

257 lines
8.5 KiB
Coq
Raw Normal View History

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2020 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module adrv9001_tx #(
parameter CMOS_LVDS_N = 0,
parameter NUM_LANES = 4,
parameter FPGA_TECHNOLOGY = 0,
parameter USE_BUFG = 0,
parameter USE_RX_CLK_FOR_TX = 0
) (
input ref_clk,
input up_clk,
input mssi_sync,
input tx_output_enable,
// physical interface (transmit)
output tx_dclk_out_n_NC,
output tx_dclk_out_p_dclk_out,
input tx_dclk_in_n_NC,
input tx_dclk_in_p_dclk_in,
output tx_idata_out_n_idata0,
output tx_idata_out_p_idata1,
output tx_qdata_out_n_qdata2,
output tx_qdata_out_p_qdata3,
output tx_strobe_out_n_NC,
output tx_strobe_out_p_strobe_out,
input rx_clk_div,
input rx_clk,
input rx_ssi_rst,
// internal resets and clocks
output [31:0] dac_clk_ratio,
input dac_rst,
output dac_clk_div,
input [7:0] dac_data_0,
input [7:0] dac_data_1,
input [7:0] dac_data_2,
input [7:0] dac_data_3,
input [7:0] dac_data_strb,
input [7:0] dac_data_clk,
input dac_data_valid
);
localparam SEVEN_SERIES = 1;
localparam ULTRASCALE = 2;
localparam ULTRASCALE_PLUS = 3;
// internal wire
wire tx_dclk_in_s;
wire dac_fast_clk;
wire [NUM_LANES-1:0] serdes_out_p;
wire [NUM_LANES-1:0] serdes_out_n;
wire [NUM_LANES-1:0] data_s0;
wire [NUM_LANES-1:0] data_s1;
wire [NUM_LANES-1:0] data_s2;
wire [NUM_LANES-1:0] data_s3;
wire [NUM_LANES-1:0] data_s4;
wire [NUM_LANES-1:0] data_s5;
wire [NUM_LANES-1:0] data_s6;
wire [NUM_LANES-1:0] data_s7;
wire ssi_rst;
ad_serdes_out #(
.CMOS_LVDS_N (CMOS_LVDS_N),
.DDR_OR_SDR_N(1),
.DATA_WIDTH(NUM_LANES),
.SERDES_FACTOR(8),
.FPGA_TECHNOLOGY (FPGA_TECHNOLOGY)
) i_serdes (
.rst (dac_rst|ssi_rst),
.clk (dac_fast_clk),
.div_clk (dac_clk_div),
.data_oe (tx_output_enable),
.data_s0 (data_s0),
.data_s1 (data_s1),
.data_s2 (data_s2),
.data_s3 (data_s3),
.data_s4 (data_s4),
.data_s5 (data_s5),
.data_s6 (data_s6),
.data_s7 (data_s7),
.data_out_se (),
.data_out_p (serdes_out_p),
.data_out_n (serdes_out_n));
generate
if (CMOS_LVDS_N == 0) begin
IBUFGDS i_dac_clk_in_ibuf (
.I (tx_dclk_in_p_dclk_in),
.IB (tx_dclk_in_n_NC),
.O (tx_dclk_in_s));
assign data_s0 = {dac_data_clk[7],dac_data_strb[7],dac_data_1[7],dac_data_0[7]};
assign data_s1 = {dac_data_clk[6],dac_data_strb[6],dac_data_1[6],dac_data_0[6]};
assign data_s2 = {dac_data_clk[5],dac_data_strb[5],dac_data_1[5],dac_data_0[5]};
assign data_s3 = {dac_data_clk[4],dac_data_strb[4],dac_data_1[4],dac_data_0[4]};
assign data_s4 = {dac_data_clk[3],dac_data_strb[3],dac_data_1[3],dac_data_0[3]};
assign data_s5 = {dac_data_clk[2],dac_data_strb[2],dac_data_1[2],dac_data_0[2]};
assign data_s6 = {dac_data_clk[1],dac_data_strb[1],dac_data_1[1],dac_data_0[1]};
assign data_s7 = {dac_data_clk[0],dac_data_strb[0],dac_data_1[0],dac_data_0[0]};
assign {tx_dclk_out_p_dclk_out,
tx_strobe_out_p_strobe_out,
tx_qdata_out_p_qdata3,
tx_idata_out_p_idata1} = serdes_out_p;
assign {tx_dclk_out_n_NC,
tx_strobe_out_n_NC,
tx_qdata_out_n_qdata2,
tx_idata_out_n_idata0} = serdes_out_n;
end else begin
IBUF i_dac_clk_in_ibuf (
.I (tx_dclk_in_p_dclk_in),
.O (tx_dclk_in_s));
assign data_s0 = {dac_data_clk[7],dac_data_strb[7],dac_data_3[7],dac_data_2[7],dac_data_1[7],dac_data_0[7]};
assign data_s1 = {dac_data_clk[6],dac_data_strb[6],dac_data_3[6],dac_data_2[6],dac_data_1[6],dac_data_0[6]};
assign data_s2 = {dac_data_clk[5],dac_data_strb[5],dac_data_3[5],dac_data_2[5],dac_data_1[5],dac_data_0[5]};
assign data_s3 = {dac_data_clk[4],dac_data_strb[4],dac_data_3[4],dac_data_2[4],dac_data_1[4],dac_data_0[4]};
assign data_s4 = {dac_data_clk[3],dac_data_strb[3],dac_data_3[3],dac_data_2[3],dac_data_1[3],dac_data_0[3]};
assign data_s5 = {dac_data_clk[2],dac_data_strb[2],dac_data_3[2],dac_data_2[2],dac_data_1[2],dac_data_0[2]};
assign data_s6 = {dac_data_clk[1],dac_data_strb[1],dac_data_3[1],dac_data_2[1],dac_data_1[1],dac_data_0[1]};
assign data_s7 = {dac_data_clk[0],dac_data_strb[0],dac_data_3[0],dac_data_2[0],dac_data_1[0],dac_data_0[0]};
assign {tx_dclk_out_p_dclk_out,
tx_strobe_out_p_strobe_out,
tx_qdata_out_p_qdata3,
tx_qdata_out_n_qdata2,
tx_idata_out_p_idata1,
tx_idata_out_n_idata0} = serdes_out_p;
assign {tx_dclk_out_n_NC,
tx_strobe_out_n_NC} = 2'b0;
end
if (USE_RX_CLK_FOR_TX == 0) begin
if (FPGA_TECHNOLOGY == SEVEN_SERIES) begin
// SERDES fast clock
BUFIO i_dac_clk_in_gbuf (
.I (tx_dclk_in_s),
.O (dac_fast_clk));
// SERDES slow clock
BUFR #(
.BUFR_DIVIDE("4")
) i_dac_div_clk_rbuf (
.CLR (mssi_sync),
.CE (1'b1),
.I (tx_dclk_in_s),
.O (dac_clk_div_s));
if (USE_BUFG == 1) begin
BUFG I_bufg (
.I (dac_clk_div_s),
.O (dac_clk_div));
end else begin
assign dac_clk_div = dac_clk_div_s;
end
xpm_cdc_async_rst #(
.DEST_SYNC_FF (10), // DECIMAL; range: 2-10
.INIT_SYNC_FF ( 0), // DECIMAL; 0=disable simulation init values, 1=enable simulation init values
.RST_ACTIVE_HIGH ( 1) // DECIMAL; 0=active low reset, 1=active high reset
) rst_syncro (
.src_arst (mssi_sync),
.dest_clk (dac_clk_div),
.dest_arst(ssi_rst));
end else begin
reg mssi_sync_d = 1'b0;
reg mssi_sync_2d = 1'b0;
always @(posedge dac_fast_clk) begin
mssi_sync_d <= mssi_sync;
mssi_sync_2d <= mssi_sync_d;
end
BUFGCE #(
.CE_TYPE ("SYNC"),
.IS_CE_INVERTED (1'b0),
.IS_I_INVERTED (1'b0)
) i_dac_clk_in_gbuf (
.O (dac_fast_clk),
.CE (1'b1),
.I (tx_dclk_in_s));
BUFGCE_DIV #(
.BUFGCE_DIVIDE (4),
.IS_CE_INVERTED (1'b0),
.IS_CLR_INVERTED (1'b0),
.IS_I_INVERTED (1'b0)
) i_dac_div_clk_rbuf (
.O (dac_clk_div),
.CE (1'b1),
.CLR (mssi_sync_2d),
.I (tx_dclk_in_s));
assign ssi_rst = mssi_sync_2d;
end
end else begin
assign dac_fast_clk = rx_clk;
assign dac_clk_div = rx_clk_div;
assign ssi_rst = rx_ssi_rst;
end
endgenerate
assign dac_clk_ratio = 4;
endmodule