/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef OPENCV_FLANN_HEAP_H_ #define OPENCV_FLANN_HEAP_H_ //! @cond IGNORED #include #include #include namespace cvflann { // TODO: Define x > y operator and use std::greater instead template struct greater { bool operator()(const T& x, const T& y) const { return y < x; } }; /** * Priority Queue Implementation * * The priority queue is implemented with a heap. A heap is a complete * (full) binary tree in which each parent is less than both of its * children, but the order of the children is unspecified. */ template class Heap { /** * Storage array for the heap. * Type T must be comparable. */ std::vector heap; public: /** * \brief Constructs a heap with a pre-allocated capacity * * \param capacity heap maximum capacity */ Heap(const int capacity) { reserve(capacity); } /** * \brief Move-constructs a heap from an external vector * * \param vec external vector */ Heap(std::vector&& vec) : heap(std::move(vec)) { std::make_heap(heap.begin(), heap.end(), greater()); } /** * * \returns heap size */ int size() const { return (int)heap.size(); } /** * * \returns heap capacity */ int capacity() const { return (int)heap.capacity(); } /** * \brief Tests if the heap is empty * * \returns true is heap empty, false otherwise */ bool empty() { return heap.empty(); } /** * \brief Clears the heap. */ void clear() { heap.clear(); } /** * \brief Sets the heap maximum capacity. * * \param capacity heap maximum capacity */ void reserve(const int capacity) { heap.reserve(capacity); } /** * \brief Inserts a new element in the heap. * * We select the next empty leaf node, and then keep moving any larger * parents down until the right location is found to store this element. * * \param value the new element to be inserted in the heap */ void insert(T value) { /* If heap is full, then return without adding this element. */ if (size() == capacity()) { return; } heap.push_back(value); std::push_heap(heap.begin(), heap.end(), greater()); } /** * \brief Returns the node of minimum value from the heap (top of the heap). * * \param[out] value parameter used to return the min element * \returns false if heap empty */ bool popMin(T& value) { if (empty()) { return false; } value = heap[0]; std::pop_heap(heap.begin(), heap.end(), greater()); heap.pop_back(); return true; /* Return old last node. */ } /** * \brief Returns a shared heap for the given memory pool ID. * * It constructs the heap if it does not already exists. * * \param poolId a user-chosen hashable ID for identifying the heap. * For thread-safe operations, using current thread ID is a good choice. * \param capacity heap maximum capacity * \param iterThreshold remove heaps that were not reused for more than specified iterations count * if iterThreshold value is less 2, it will be internally adjusted to twice the number of CPU threads * \returns pointer to the heap */ template static cv::Ptr> getPooledInstance( const HashableT& poolId, const int capacity, int iterThreshold = 0) { static cv::Mutex mutex; const cv::AutoLock lock(mutex); struct HeapMapValueType { cv::Ptr> heapPtr; int iterCounter; }; typedef std::unordered_map HeapMapType; static HeapMapType heapsPool; typename HeapMapType::iterator heapIt = heapsPool.find(poolId); if (heapIt == heapsPool.end()) { // Construct the heap as it does not already exists HeapMapValueType heapAndTimePair = {cv::makePtr>(capacity), 0}; const std::pair& emplaceResult = heapsPool.emplace(poolId, std::move(heapAndTimePair)); CV_CheckEQ(static_cast(emplaceResult.second), 1, "Failed to insert the heap into its memory pool"); heapIt = emplaceResult.first; } else { CV_CheckEQ(heapIt->second.heapPtr.use_count(), 1, "Cannot modify a heap that is currently accessed by another caller"); heapIt->second.heapPtr->clear(); heapIt->second.heapPtr->reserve(capacity); heapIt->second.iterCounter = 0; } if (iterThreshold <= 1) { iterThreshold = 2 * cv::getNumThreads(); } // Remove heaps that were not reused for more than given iterThreshold typename HeapMapType::iterator cleanupIt = heapsPool.begin(); while (cleanupIt != heapsPool.end()) { if (cleanupIt->second.iterCounter++ > iterThreshold) { CV_Assert(cleanupIt != heapIt); cleanupIt = heapsPool.erase(cleanupIt); continue; } ++cleanupIt; } return heapIt->second.heapPtr; } }; } //! @endcond #endif //OPENCV_FLANN_HEAP_H_