245 lines
7.0 KiB
C
245 lines
7.0 KiB
C
|
/***********************************************************************
|
||
|
* Software License Agreement (BSD License)
|
||
|
*
|
||
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||
|
*
|
||
|
* THE BSD LICENSE
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*************************************************************************/
|
||
|
|
||
|
#ifndef OPENCV_FLANN_HEAP_H_
|
||
|
#define OPENCV_FLANN_HEAP_H_
|
||
|
|
||
|
//! @cond IGNORED
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <vector>
|
||
|
|
||
|
#include <unordered_map>
|
||
|
|
||
|
namespace cvflann
|
||
|
{
|
||
|
|
||
|
// TODO: Define x > y operator and use std::greater<T> instead
|
||
|
template <typename T>
|
||
|
struct greater
|
||
|
{
|
||
|
bool operator()(const T& x, const T& y) const
|
||
|
{
|
||
|
return y < x;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Priority Queue Implementation
|
||
|
*
|
||
|
* The priority queue is implemented with a heap. A heap is a complete
|
||
|
* (full) binary tree in which each parent is less than both of its
|
||
|
* children, but the order of the children is unspecified.
|
||
|
*/
|
||
|
template <typename T>
|
||
|
class Heap
|
||
|
{
|
||
|
/**
|
||
|
* Storage array for the heap.
|
||
|
* Type T must be comparable.
|
||
|
*/
|
||
|
std::vector<T> heap;
|
||
|
public:
|
||
|
/**
|
||
|
* \brief Constructs a heap with a pre-allocated capacity
|
||
|
*
|
||
|
* \param capacity heap maximum capacity
|
||
|
*/
|
||
|
Heap(const int capacity)
|
||
|
{
|
||
|
reserve(capacity);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Move-constructs a heap from an external vector
|
||
|
*
|
||
|
* \param vec external vector
|
||
|
*/
|
||
|
Heap(std::vector<T>&& vec)
|
||
|
: heap(std::move(vec))
|
||
|
{
|
||
|
std::make_heap(heap.begin(), heap.end(), greater<T>());
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
* \returns heap size
|
||
|
*/
|
||
|
int size() const
|
||
|
{
|
||
|
return (int)heap.size();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
*
|
||
|
* \returns heap capacity
|
||
|
*/
|
||
|
int capacity() const
|
||
|
{
|
||
|
return (int)heap.capacity();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Tests if the heap is empty
|
||
|
*
|
||
|
* \returns true is heap empty, false otherwise
|
||
|
*/
|
||
|
bool empty()
|
||
|
{
|
||
|
return heap.empty();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Clears the heap.
|
||
|
*/
|
||
|
void clear()
|
||
|
{
|
||
|
heap.clear();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Sets the heap maximum capacity.
|
||
|
*
|
||
|
* \param capacity heap maximum capacity
|
||
|
*/
|
||
|
void reserve(const int capacity)
|
||
|
{
|
||
|
heap.reserve(capacity);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Inserts a new element in the heap.
|
||
|
*
|
||
|
* We select the next empty leaf node, and then keep moving any larger
|
||
|
* parents down until the right location is found to store this element.
|
||
|
*
|
||
|
* \param value the new element to be inserted in the heap
|
||
|
*/
|
||
|
void insert(T value)
|
||
|
{
|
||
|
/* If heap is full, then return without adding this element. */
|
||
|
if (size() == capacity()) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
heap.push_back(value);
|
||
|
std::push_heap(heap.begin(), heap.end(), greater<T>());
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Returns the node of minimum value from the heap (top of the heap).
|
||
|
*
|
||
|
* \param[out] value parameter used to return the min element
|
||
|
* \returns false if heap empty
|
||
|
*/
|
||
|
bool popMin(T& value)
|
||
|
{
|
||
|
if (empty()) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
value = heap[0];
|
||
|
std::pop_heap(heap.begin(), heap.end(), greater<T>());
|
||
|
heap.pop_back();
|
||
|
|
||
|
return true; /* Return old last node. */
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Returns a shared heap for the given memory pool ID.
|
||
|
*
|
||
|
* It constructs the heap if it does not already exists.
|
||
|
*
|
||
|
* \param poolId a user-chosen hashable ID for identifying the heap.
|
||
|
* For thread-safe operations, using current thread ID is a good choice.
|
||
|
* \param capacity heap maximum capacity
|
||
|
* \param iterThreshold remove heaps that were not reused for more than specified iterations count
|
||
|
* if iterThreshold value is less 2, it will be internally adjusted to twice the number of CPU threads
|
||
|
* \returns pointer to the heap
|
||
|
*/
|
||
|
template <typename HashableT>
|
||
|
static cv::Ptr<Heap<T>> getPooledInstance(
|
||
|
const HashableT& poolId, const int capacity, int iterThreshold = 0)
|
||
|
{
|
||
|
static cv::Mutex mutex;
|
||
|
const cv::AutoLock lock(mutex);
|
||
|
|
||
|
struct HeapMapValueType {
|
||
|
cv::Ptr<Heap<T>> heapPtr;
|
||
|
int iterCounter;
|
||
|
};
|
||
|
typedef std::unordered_map<HashableT, HeapMapValueType> HeapMapType;
|
||
|
|
||
|
static HeapMapType heapsPool;
|
||
|
typename HeapMapType::iterator heapIt = heapsPool.find(poolId);
|
||
|
|
||
|
if (heapIt == heapsPool.end())
|
||
|
{
|
||
|
// Construct the heap as it does not already exists
|
||
|
HeapMapValueType heapAndTimePair = {cv::makePtr<Heap<T>>(capacity), 0};
|
||
|
const std::pair<typename HeapMapType::iterator, bool>& emplaceResult = heapsPool.emplace(poolId, std::move(heapAndTimePair));
|
||
|
CV_CheckEQ(static_cast<int>(emplaceResult.second), 1, "Failed to insert the heap into its memory pool");
|
||
|
heapIt = emplaceResult.first;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
CV_CheckEQ(heapIt->second.heapPtr.use_count(), 1, "Cannot modify a heap that is currently accessed by another caller");
|
||
|
heapIt->second.heapPtr->clear();
|
||
|
heapIt->second.heapPtr->reserve(capacity);
|
||
|
heapIt->second.iterCounter = 0;
|
||
|
}
|
||
|
|
||
|
if (iterThreshold <= 1) {
|
||
|
iterThreshold = 2 * cv::getNumThreads();
|
||
|
}
|
||
|
|
||
|
// Remove heaps that were not reused for more than given iterThreshold
|
||
|
typename HeapMapType::iterator cleanupIt = heapsPool.begin();
|
||
|
while (cleanupIt != heapsPool.end())
|
||
|
{
|
||
|
if (cleanupIt->second.iterCounter++ > iterThreshold)
|
||
|
{
|
||
|
CV_Assert(cleanupIt != heapIt);
|
||
|
cleanupIt = heapsPool.erase(cleanupIt);
|
||
|
continue;
|
||
|
}
|
||
|
++cleanupIt;
|
||
|
}
|
||
|
|
||
|
return heapIt->second.heapPtr;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
}
|
||
|
|
||
|
//! @endcond
|
||
|
|
||
|
#endif //OPENCV_FLANN_HEAP_H_
|