174 lines
5.1 KiB
Matlab
174 lines
5.1 KiB
Matlab
%
|
|
% infinitesimal dipole example
|
|
%
|
|
|
|
close all
|
|
clear
|
|
clc
|
|
|
|
postprocessing_only = 0;
|
|
|
|
physical_constants
|
|
|
|
% setup the simulation
|
|
drawingunit = 1e-6; % specify everything in um
|
|
Sim_Path = 'tmp';
|
|
Sim_CSX = 'tmp.xml';
|
|
|
|
f_max = 1e9;
|
|
lambda = c0/f_max;
|
|
|
|
% setup geometry values
|
|
dipole_length = lambda/50 /drawingunit;
|
|
|
|
|
|
dipole_orientation = 3; % 1,2,3: x,y,z
|
|
|
|
|
|
CSX = InitCSX();
|
|
|
|
% create an equidistant mesh
|
|
mesh.x = -dipole_length*10:dipole_length/2:dipole_length*10;
|
|
mesh.y = -dipole_length*10:dipole_length/2:dipole_length*10;
|
|
mesh.z = -dipole_length*10:dipole_length/2:dipole_length*10;
|
|
|
|
% excitation
|
|
ex_vector = [0 0 0];
|
|
ex_vector(dipole_orientation) = 1;
|
|
start = ex_vector * -dipole_length/2;
|
|
stop = ex_vector * dipole_length/2;
|
|
CSX = AddExcitation( CSX, 'infDipole', 1, ex_vector );
|
|
% enlarge the box to be sure that one mesh line is covered by it
|
|
start = start - [0.1 0.1 0.1] * dipole_length/2;
|
|
stop = stop + [0.1 0.1 0.1] * dipole_length/2;
|
|
CSX = AddBox( CSX, 'infDipole', 1, start, stop );
|
|
|
|
% NFFF contour
|
|
start = [mesh.x(1) mesh.y(1) mesh.z(1) ];
|
|
stop = [mesh.x(end) mesh.y(end) mesh.z(end) ];
|
|
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop);
|
|
|
|
% add space for PML
|
|
mesh = AddPML( mesh, [8 8 8 8 8 8] );
|
|
% define the mesh
|
|
CSX = DefineRectGrid( CSX, drawingunit, mesh );
|
|
|
|
if ~postprocessing_only
|
|
% setup FDTD parameters & excitation function
|
|
max_timesteps = 2000;
|
|
min_decrement = 1e-6;
|
|
FDTD = InitFDTD( max_timesteps, min_decrement, 'OverSampling',10 );
|
|
FDTD = SetGaussExcite( FDTD, f_max/2, f_max/2 );
|
|
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'};
|
|
FDTD = SetBoundaryCond( FDTD, BC );
|
|
|
|
% Write openEMS compatible xml-file
|
|
[~,~,~] = rmdir(Sim_Path,'s');
|
|
[~,~,~] = mkdir(Sim_Path);
|
|
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
|
|
|
|
% take a view at the "structure"
|
|
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
|
|
|
|
% define openEMS options and start simulation
|
|
openEMS_opts = '';
|
|
RunOpenEMS( Sim_Path, Sim_CSX, openEMS_opts );
|
|
end
|
|
|
|
%% post processing
|
|
disp( ' ' );
|
|
disp( ' ********************************************************** ' );
|
|
disp( ' ' );
|
|
|
|
% calculate the far field at phi=0 degrees and at phi=90 degrees
|
|
thetaRange = 0:2:359;
|
|
disp( 'calculating far field at phi=[0 90] deg..' );
|
|
%[E_far_theta,E_far_phi,Prad,Dmax] = AnalyzeNF2FF( Sim_Path, nf2ff, f_max, thetaRange, [0 90], 1 );
|
|
nf2ff = CalcNF2FF( nf2ff, Sim_Path, f_max, thetaRange/180*pi, [0 pi/2], 'Mode', 1 );
|
|
Prad = nf2ff.Prad;
|
|
Dmax = nf2ff.Dmax;
|
|
f_idx = 1;
|
|
E_far_theta = nf2ff.E_theta{f_idx};
|
|
E_far_phi = nf2ff.E_phi{f_idx};
|
|
|
|
% display power and directivity
|
|
disp( ['radiated power: Prad = ' num2str(Prad)] );
|
|
disp( ['directivity: Dmax = ' num2str(Dmax)] );
|
|
|
|
% calculate the e-field magnitude for phi = 0 deg
|
|
E_phi0_far = zeros(1,numel(thetaRange));
|
|
for n=1:numel(thetaRange)
|
|
E_phi0_far(n) = norm( [E_far_theta(n,1) E_far_phi(n,1)] );
|
|
end
|
|
|
|
% display polar plot
|
|
figure
|
|
polar( thetaRange/180*pi, E_phi0_far );
|
|
ylabel( 'theta / deg' );
|
|
title( ['electrical far field (V/m); r=1 m phi=0 deg'] );
|
|
legend( 'e-field magnitude', 'Location', 'BestOutside' );
|
|
|
|
% calculate the e-field magnitude for phi = 90 deg
|
|
E_phi90_far = zeros(1,numel(thetaRange));
|
|
for n=1:numel(thetaRange)
|
|
E_phi90_far(n) = norm([E_far_theta(n,2) E_far_phi(n,2)]);
|
|
end
|
|
|
|
% display polar plot
|
|
figure
|
|
polar( thetaRange/180*pi, E_phi90_far );
|
|
ylabel( 'theta / deg' );
|
|
title( ['electrical far field (V/m); r=1 m phi=90 deg'] );
|
|
legend( 'e-field magnitude', 'Location', 'BestOutside' );
|
|
|
|
% calculate the far field at theta=90 degrees
|
|
phiRange = 0:2:359;
|
|
disp( 'calculating far field at theta=90 deg..' );
|
|
%[E_far_theta,E_far_phi] = AnalyzeNF2FF( Sim_Path, nf2ff, f_max, 90, phiRange, 1 );
|
|
nf2ff = CalcNF2FF( nf2ff, Sim_Path, f_max, 90, phiRange/180*pi, 'Mode', 1 );
|
|
Prad = nf2ff.Prad;
|
|
Dmax = nf2ff.Dmax;
|
|
f_idx = 1;
|
|
E_far_theta = nf2ff.E_theta{f_idx};
|
|
E_far_phi = nf2ff.E_phi{f_idx};
|
|
|
|
E_theta90_far = zeros(1,numel(phiRange));
|
|
for n=1:numel(phiRange)
|
|
E_theta90_far(n) = norm([E_far_theta(1,n) E_far_phi(1,n)]);
|
|
end
|
|
|
|
% display polar plot
|
|
figure
|
|
polar( phiRange/180*pi, E_theta90_far );
|
|
ylabel( 'phi / deg' );
|
|
title( ['electrical far field (V/m); r=1 m theta=90 deg'] );
|
|
legend( 'e-field magnitude', 'Location', 'BestOutside' );
|
|
|
|
|
|
% calculate 3D pattern
|
|
phiRange = 0:15:360;
|
|
thetaRange = 0:10:180;
|
|
disp( 'calculating 3D far field...' );
|
|
%[E_far_theta,E_far_phi] = AnalyzeNF2FF( Sim_Path, nf2ff, f_max, thetaRange, phiRange, 1 );
|
|
nf2ff = CalcNF2FF( nf2ff, Sim_Path, f_max, thetaRange/180*pi, phiRange/180*pi, 'Mode', 1 );
|
|
f_idx = 1;
|
|
E_far_theta = nf2ff.E_theta{f_idx};
|
|
E_far_phi = nf2ff.E_phi{f_idx};
|
|
|
|
E_far = sqrt( abs(E_far_theta).^2 + abs(E_far_phi).^2 );
|
|
E_far_normalized = E_far / max(E_far(:));
|
|
[theta,phi] = ndgrid(thetaRange/180*pi,phiRange/180*pi);
|
|
x = E_far_normalized .* sin(theta) .* cos(phi);
|
|
y = E_far_normalized .* sin(theta) .* sin(phi);
|
|
z = E_far_normalized .* cos(theta);
|
|
figure
|
|
surf( x,y,z, E_far_normalized );
|
|
axis equal
|
|
xlabel( 'x' );
|
|
ylabel( 'y' );
|
|
zlabel( 'z' );
|
|
|
|
%
|
|
DumpFF2VTK([Sim_Path '/FF_pattern.vtk'],E_far_normalized, thetaRange, phiRange);
|
|
disp(['view the farfield pattern "' Sim_Path '/FF_pattern.vtk" using paraview' ]);
|