463 lines
16 KiB
C++
463 lines
16 KiB
C++
/*
|
|
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <iomanip>
|
|
#include <H5Cpp.h>
|
|
#include "tools/global.h"
|
|
#include "processfields.h"
|
|
#include "FDTD/engine_interface_fdtd.h"
|
|
|
|
ProcessFields::ProcessFields(Engine_Interface_Base* eng_if) : Processing(eng_if)
|
|
{
|
|
m_DumpType = E_FIELD_DUMP;
|
|
// vtk-file is default
|
|
m_fileType = VTK_FILETYPE;
|
|
SetSubSampling(1);
|
|
SetPrecision(6);
|
|
|
|
for (int n=0; n<3; ++n)
|
|
{
|
|
numLines[n]=0;
|
|
discLines[n]=NULL;
|
|
}
|
|
}
|
|
|
|
ProcessFields::~ProcessFields()
|
|
{
|
|
for (int n=0; n<3; ++n)
|
|
{
|
|
delete[] discLines[n];
|
|
discLines[n]=NULL;
|
|
}
|
|
}
|
|
|
|
void ProcessFields::InitProcess()
|
|
{
|
|
if (Enabled==false) return;
|
|
//get the correct direction names for all coordinate systems
|
|
string names[] = {Op->GetDirName(0),Op->GetDirName(1),Op->GetDirName(2)};
|
|
if (m_fileType==HDF5_FILETYPE)
|
|
{
|
|
m_filename+= ".h5";
|
|
|
|
H5::H5File* file = new H5::H5File( m_filename , H5F_ACC_TRUNC );
|
|
|
|
H5::Group* group = new H5::Group( file->createGroup( "/Mesh" ));
|
|
for (int n=0; n<3; ++n)
|
|
{
|
|
hsize_t dimsf[1]; // dataset dimensions
|
|
dimsf[0] = numLines[n];
|
|
H5::DataSpace dataspace( 1, dimsf );
|
|
H5::FloatType datatype( H5::PredType::NATIVE_FLOAT );
|
|
H5::DataSet dataset = group->createDataSet( names[n].c_str(), datatype, dataspace );
|
|
//convert to float...
|
|
float* array = new float[numLines[n]];
|
|
for (unsigned int i=0; i<numLines[n]; ++i)
|
|
{
|
|
#ifdef OUTPUT_IN_DRAWINGUNITS
|
|
array[i] = Lines[n][i];
|
|
#else
|
|
if ((m_Mesh_Type==CYLINDRICAL_MESH) && (n==1)) //check for alpha-direction
|
|
array[i] = discLines[n][i];
|
|
else
|
|
array[i] = discLines[n][i] * Op->GetGridDelta();
|
|
#endif
|
|
}
|
|
//write to dataset
|
|
dataset.write( array, H5::PredType::NATIVE_FLOAT );
|
|
}
|
|
delete group;
|
|
|
|
group = new H5::Group( file->createGroup( "/FieldData" ));
|
|
delete group;
|
|
delete file;
|
|
}
|
|
}
|
|
|
|
string ProcessFields::GetFieldNameByType(DumpType type)
|
|
{
|
|
switch (type)
|
|
{
|
|
case E_FIELD_DUMP:
|
|
return "E-Field";
|
|
case H_FIELD_DUMP:
|
|
return "H-Field";
|
|
}
|
|
return "unknown field";
|
|
}
|
|
|
|
void ProcessFields::DefineStartStopCoord(double* dstart, double* dstop)
|
|
{
|
|
vector<double> lines;
|
|
|
|
// determine mesh type
|
|
bool dualMesh = false;
|
|
if (m_DumpType == H_FIELD_DUMP)
|
|
dualMesh = true;
|
|
|
|
Engine_Interface_Base::InterpolationType m_DumpMode = m_Eng_Interface->GetInterpolationType();
|
|
if (m_DumpMode==Engine_Interface_Base::NO_INTERPOLATION)
|
|
{
|
|
if (!Op->SnapToMesh(dstart,start,dualMesh))
|
|
cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check start value!!" << endl;
|
|
if (!Op->SnapToMesh(dstop,stop,dualMesh))
|
|
cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check stop value!!" << endl;
|
|
|
|
for (int n=0; n<3; ++n)
|
|
{
|
|
// normalize order of start and stop
|
|
if (start[n]>stop[n])
|
|
{
|
|
unsigned int help = start[n];
|
|
start[n]=stop[n];
|
|
stop[n]=help;
|
|
}
|
|
|
|
// construct new discLines
|
|
lines.clear();
|
|
for (unsigned int i=start[n]; i<=stop[n]; i+=subSample[n])
|
|
{
|
|
lines.push_back(Op->GetDiscLine(n,i,dualMesh));
|
|
}
|
|
numLines[n] = lines.size();
|
|
delete[] discLines[n];
|
|
discLines[n] = new double[numLines[n]];
|
|
for (unsigned int i=0; i<numLines[n]; ++i)
|
|
discLines[n][i] = lines.at(i);
|
|
}
|
|
}
|
|
else if (m_DumpMode==Engine_Interface_Base::NODE_INTERPOLATE)
|
|
{
|
|
if (Op->SnapToMesh(dstart,start)==false) cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check start value!!" << endl;
|
|
if (Op->SnapToMesh(dstop,stop)==false) cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check stop value!!" << endl;
|
|
|
|
//create mesh
|
|
for (int n=0; n<3; ++n)
|
|
{
|
|
if (start[n]>stop[n])
|
|
{
|
|
unsigned int help = start[n];
|
|
start[n]=stop[n];
|
|
stop[n]=help;
|
|
}
|
|
// if (stop[n]==Op->GetNumberOfLines(n)-1)
|
|
// --stop[n];
|
|
// cerr << "start " << start[n] << "stop " << stop[n];
|
|
lines.clear();
|
|
for (unsigned int i=start[n]; i<=stop[n]; i+=subSample[n])
|
|
{
|
|
lines.push_back(Op->GetDiscLine(n,i));//0.5*(Op->discLines[n][i+1] + Op->discLines[n][i]));
|
|
}
|
|
numLines[n] = lines.size();
|
|
delete[] discLines[n];
|
|
discLines[n] = new double[numLines[n]];
|
|
for (unsigned int i=0; i<numLines[n]; ++i)
|
|
discLines[n][i] = lines.at(i);
|
|
}
|
|
}
|
|
else if (m_DumpMode==Engine_Interface_Base::CELL_INTERPOLATE)
|
|
{
|
|
if (Op->SnapToMesh(dstart,start,true)==false) cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check start value!!" << endl;
|
|
if (Op->SnapToMesh(dstop,stop,true)==false) cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check stop value!!" << endl;
|
|
|
|
//create dual mesh
|
|
for (int n=0; n<3; ++n)
|
|
{
|
|
// cerr << "start " << start[n] << "stop " << stop[n];
|
|
if (start[n]>stop[n])
|
|
{
|
|
unsigned int help = start[n];
|
|
start[n]=stop[n];
|
|
stop[n]=help;
|
|
}
|
|
++stop[n];
|
|
lines.clear();
|
|
for (unsigned int i=start[n]; i<stop[n]; i+=subSample[n])
|
|
{
|
|
lines.push_back(Op->GetDiscLine(n,i,true));//0.5*(Op->discLines[n][i+1] + Op->discLines[n][i]));
|
|
}
|
|
numLines[n] = lines.size();
|
|
delete[] discLines[n];
|
|
discLines[n] = new double[numLines[n]];
|
|
for (unsigned int i=0; i<numLines[n]; ++i)
|
|
discLines[n][i] = lines.at(i);
|
|
}
|
|
}
|
|
|
|
if (g_settings.showProbeDiscretization())
|
|
{
|
|
// FIXME the information E-Field / H-Field and therefore which mesh to use is missing
|
|
bool dualMesh = false;
|
|
cerr << m_filename << ": snapped coords: (" << Op->GetDiscLine( 0, start[0], dualMesh ) << ","
|
|
<< Op->GetDiscLine( 1, start[1], dualMesh ) << "," << Op->GetDiscLine( 2, start[2], dualMesh ) << ") -> ("
|
|
<< Op->GetDiscLine( 0, stop[0], dualMesh ) << ","<< Op->GetDiscLine( 1, stop[1], dualMesh ) << ","
|
|
<< Op->GetDiscLine( 2, stop[2], dualMesh ) << ")";
|
|
cerr << " [" << start[0] << "," << start[1] << "," << start[2] << "] -> ["
|
|
<< stop[0] << "," << stop[1] << "," << stop[2] << "]" << endl;
|
|
}
|
|
|
|
}
|
|
|
|
double ProcessFields::CalcTotalEnergy() const
|
|
{
|
|
double energy=0.0;
|
|
|
|
Engine_Interface_FDTD* EI_FDTD = dynamic_cast<Engine_Interface_FDTD*>(m_Eng_Interface);
|
|
|
|
if (EI_FDTD)
|
|
{
|
|
const Engine* Eng = EI_FDTD->GetFDTDEngine();
|
|
|
|
unsigned int pos[3];
|
|
for (pos[0]=0; pos[0]<Op->GetNumberOfLines(0); ++pos[0])
|
|
{
|
|
for (pos[1]=0; pos[1]<Op->GetNumberOfLines(1); ++pos[1])
|
|
{
|
|
for (pos[2]=0; pos[2]<Op->GetNumberOfLines(2); ++pos[2])
|
|
{
|
|
energy+=fabs(Eng->GetVolt(0,pos[0],pos[1],pos[2]) * Eng->GetCurr(1,pos[0],pos[1],pos[2]));
|
|
energy+=fabs(Eng->GetVolt(0,pos[0],pos[1],pos[2]) * Eng->GetCurr(2,pos[0],pos[1],pos[2]));
|
|
energy+=fabs(Eng->GetVolt(1,pos[0],pos[1],pos[2]) * Eng->GetCurr(0,pos[0],pos[1],pos[2]));
|
|
energy+=fabs(Eng->GetVolt(1,pos[0],pos[1],pos[2]) * Eng->GetCurr(2,pos[0],pos[1],pos[2]));
|
|
energy+=fabs(Eng->GetVolt(2,pos[0],pos[1],pos[2]) * Eng->GetCurr(0,pos[0],pos[1],pos[2]));
|
|
energy+=fabs(Eng->GetVolt(2,pos[0],pos[1],pos[2]) * Eng->GetCurr(1,pos[0],pos[1],pos[2]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return energy*0.5;
|
|
}
|
|
|
|
void ProcessFields::SetSubSampling(unsigned int subSampleRate, int dir)
|
|
{
|
|
if (dir>2) return;
|
|
if (dir<0)
|
|
{
|
|
subSample[0]=subSampleRate;
|
|
subSample[1]=subSampleRate;
|
|
subSample[2]=subSampleRate;
|
|
}
|
|
else subSample[dir]=subSampleRate;
|
|
}
|
|
|
|
void ProcessFields::WriteVTKHeader(ofstream &file, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, MeshType meshT, double discLines_scaling)
|
|
{
|
|
if (meshT==CARTESIAN_MESH)
|
|
WriteVTKCartesianGridHeader(file, discLines, numLines, precision, header_info, discLines_scaling);
|
|
else if (meshT==CYLINDRICAL_MESH)
|
|
WriteVTKCylindricalGridHeader(file, discLines, numLines, precision, header_info, discLines_scaling);
|
|
else
|
|
cerr << "ProcessFields::WriteVTKHeader: Warning: unknown mesh type, skipping header -> file will be invalid..." << endl;
|
|
}
|
|
|
|
void ProcessFields::WriteVTKCartesianGridHeader(ofstream &file, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, double discLines_scaling)
|
|
{
|
|
file << "# vtk DataFile Version 2.0" << endl;
|
|
file << "Rectilinear Grid openEMS_ProcessFields";
|
|
if (!header_info.empty())
|
|
file << " " << header_info;
|
|
file << endl;
|
|
file << "ASCII" << endl;
|
|
file << "DATASET RECTILINEAR_GRID " << endl;
|
|
file << "DIMENSIONS " << numLines[0] << " " << numLines[1] << " " << numLines[2] << endl;
|
|
file << "X_COORDINATES " << numLines[0] << " " << __VTK_DATA_TYPE__ << endl;
|
|
for (unsigned int i=0; i<numLines[0]; ++i)
|
|
file << setprecision(precision) << discLines[0][i] * discLines_scaling << " ";
|
|
file << endl;
|
|
file << "Y_COORDINATES " << numLines[1] << " " << __VTK_DATA_TYPE__ << endl;
|
|
for (unsigned int i=0; i<numLines[1]; ++i)
|
|
file << setprecision(precision) << discLines[1][i] * discLines_scaling << " ";
|
|
file << endl;
|
|
file << "Z_COORDINATES " << numLines[2] << " " << __VTK_DATA_TYPE__ << endl;
|
|
for (unsigned int i=0; i<numLines[2]; ++i)
|
|
file << setprecision(precision) << discLines[2][i] * discLines_scaling << " ";
|
|
file << endl << endl;
|
|
file << "POINT_DATA " << numLines[0]*numLines[1]*numLines[2] << endl;
|
|
}
|
|
|
|
void ProcessFields::WriteVTKCylindricalGridHeader(ofstream &file, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, double discLines_scaling)
|
|
{
|
|
file << "# vtk DataFile Version 3.0" << endl;
|
|
file << "Structured Grid from openEMS_ProcessFields";
|
|
if (!header_info.empty())
|
|
file << " " << header_info;
|
|
file << endl;
|
|
file << "ASCII" << endl;
|
|
file << "DATASET STRUCTURED_GRID " << endl;
|
|
file << "DIMENSIONS " << numLines[0] << " " << numLines[1] << " " << numLines[2] << endl;
|
|
file << "POINTS " << numLines[0]*numLines[1]*numLines[2] << " " << __VTK_DATA_TYPE__ << endl;
|
|
for (unsigned int k=0; k<numLines[2]; ++k)
|
|
for (unsigned int j=0; j<numLines[1]; ++j)
|
|
for (unsigned int i=0; i<numLines[0]; ++i)
|
|
{
|
|
file << setprecision(precision) << discLines[0][i] * cos(discLines[1][j]) * discLines_scaling << " "
|
|
<< discLines[0][i] * sin(discLines[1][j]) * discLines_scaling << " "
|
|
<< discLines[2][k] * discLines_scaling << endl;
|
|
}
|
|
file << endl;
|
|
file << endl << endl;
|
|
file << "POINT_DATA " << numLines[0]*numLines[1]*numLines[2] << endl;
|
|
}
|
|
|
|
|
|
void ProcessFields::WriteVTKVectorArray(ofstream &file, string name, FDTD_FLOAT const* const* const* const* array, double const* const* discLines, unsigned int const* numLines, unsigned int precision, MeshType meshT)
|
|
{
|
|
file << "VECTORS " << name << " " << __VTK_DATA_TYPE__ << endl;
|
|
|
|
if (g_settings.NativeFieldDumps())
|
|
meshT = CARTESIAN_MESH; //dump field components as they are...
|
|
|
|
unsigned int pos[3];
|
|
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
|
|
{
|
|
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
|
|
{
|
|
double cos_a = cos(discLines[1][pos[1]]); //needed only for CYLINDRICAL_MESH
|
|
double sin_a = sin(discLines[1][pos[1]]); //needed only for CYLINDRICAL_MESH
|
|
for (pos[0]=0; pos[0]<numLines[0]; ++pos[0])
|
|
{
|
|
switch (meshT)
|
|
{
|
|
case CARTESIAN_MESH:
|
|
UNUSED(discLines); //disclines not needed for the original cartesian mesh
|
|
//in x
|
|
file << setprecision(precision) << array[0][pos[0]][pos[1]][pos[2]] << " ";
|
|
//in y
|
|
file << setprecision(precision) << array[1][pos[0]][pos[1]][pos[2]] << " ";
|
|
//in z
|
|
file << setprecision(precision) << array[2][pos[0]][pos[1]][pos[2]] << endl;
|
|
break;
|
|
case CYLINDRICAL_MESH:
|
|
//in x : F_x = F_r * cos(a) - F_a * sin(a);
|
|
file << setprecision(precision) << array[0][pos[0]][pos[1]][pos[2]] * cos_a - array[1][pos[0]][pos[1]][pos[2]] * sin_a << " ";
|
|
//in y : F_y = F_r * sin(a) + F_a * cos(a);
|
|
file << setprecision(precision) << array[0][pos[0]][pos[1]][pos[2]] * sin_a + array[1][pos[0]][pos[1]][pos[2]] * cos_a << " ";
|
|
//in z
|
|
file << setprecision(precision) << array[2][pos[0]][pos[1]][pos[2]] << endl;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool ProcessFields::DumpVectorArray2VTK(ofstream &file, string name, FDTD_FLOAT const* const* const* const* array, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, MeshType meshT, double discLines_scaling)
|
|
{
|
|
WriteVTKHeader(file, discLines, numLines, precision, header_info, meshT, discLines_scaling);
|
|
WriteVTKVectorArray(file, name, array, discLines, numLines, precision, meshT);
|
|
return true;
|
|
}
|
|
|
|
bool ProcessFields::DumpMultiVectorArray2VTK(ofstream &file, string names[], FDTD_FLOAT const* const* const* const* const* array, unsigned int numFields, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, MeshType meshT, double discLines_scaling)
|
|
{
|
|
WriteVTKHeader(file, discLines, numLines, precision, header_info, meshT, discLines_scaling);
|
|
for (unsigned int n=0; n<numFields; ++n)
|
|
{
|
|
WriteVTKVectorArray(file, names[n], array[n], discLines, numLines, precision, meshT);
|
|
file << endl;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void ProcessFields::WriteVTKScalarArray(ofstream &file, string name, FDTD_FLOAT const* const* const* array, unsigned int const* numLines, unsigned int precision)
|
|
{
|
|
file << "SCALARS " << name << " " << __VTK_DATA_TYPE__ << 1 << endl;
|
|
file << "LOOKUP_TABLE default" << endl;
|
|
unsigned int pos[3];
|
|
int count=0;
|
|
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
|
|
{
|
|
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
|
|
{
|
|
for (pos[0]=0; pos[0]<numLines[0]; ++pos[0])
|
|
{
|
|
file << setprecision(precision) << array[pos[0]][pos[1]][pos[2]] << " ";
|
|
++count;
|
|
if (count%10==0)
|
|
file << endl;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ProcessFields::DumpScalarArray2VTK(ofstream &file, string name, FDTD_FLOAT const* const* const* array, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, MeshType meshT, double discLines_scaling)
|
|
{
|
|
WriteVTKHeader(file, discLines, numLines, precision, header_info, meshT, discLines_scaling);
|
|
WriteVTKScalarArray(file, name, array, numLines, precision);
|
|
return true;
|
|
}
|
|
|
|
bool ProcessFields::DumpMultiScalarArray2VTK(ofstream &file, string names[], FDTD_FLOAT const* const* const* const* array, unsigned int numFields, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, MeshType meshT, double discLines_scaling)
|
|
{
|
|
WriteVTKHeader(file, discLines, numLines, precision, header_info, meshT, discLines_scaling);
|
|
for (unsigned int n=0; n<numFields; ++n)
|
|
{
|
|
WriteVTKScalarArray(file, names[n], array[n], numLines, precision);
|
|
file << endl;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ProcessFields::DumpVectorArray2HDF5(string filename, string name, FDTD_FLOAT const* const* const* const* array, unsigned int const* numLines, float time)
|
|
{
|
|
const H5std_string FILE_NAME(filename);
|
|
const H5std_string DATASET_NAME( name );
|
|
|
|
H5::H5File file( FILE_NAME, H5F_ACC_RDWR );
|
|
|
|
H5::Group group( file.openGroup( "/FieldData" ));
|
|
|
|
hsize_t dimsf[4]; // dataset dimensions
|
|
|
|
dimsf[0] = 3;
|
|
dimsf[1] = numLines[2];
|
|
dimsf[2] = numLines[1];
|
|
dimsf[3] = numLines[0];
|
|
|
|
H5::DataSpace dataspace( 4, dimsf );
|
|
|
|
H5::FloatType datatype( H5::PredType::NATIVE_FLOAT );
|
|
// datatype.setOrder( H5T_ORDER_LE );
|
|
H5::DataSet dataset = group.createDataSet( DATASET_NAME, datatype, dataspace );
|
|
|
|
hsize_t t_dimsf[] = {1};
|
|
H5::DataSpace t_dataspace( 1, t_dimsf );
|
|
H5::Attribute attr = dataset.createAttribute("time",H5::PredType::NATIVE_FLOAT,t_dataspace);
|
|
attr.write( H5::PredType::NATIVE_FLOAT , &time);
|
|
|
|
// I have not the slightest idea why this array-copy action is necessary... but it's the only way hdf5 does what it is supposed to do anyway!!
|
|
// at least it is save in case FDTD_FLOAT was defined as double...
|
|
// why does hdf5 write the dimensions backwards??? or matlab???
|
|
float hdf5array[3][numLines[2]][numLines[1]][numLines[0]];
|
|
for (int n=0; n<3; ++n)
|
|
{
|
|
for (unsigned int i=0; i<numLines[0]; ++i)
|
|
{
|
|
for (unsigned int j=0; j<numLines[1]; ++j)
|
|
{
|
|
for (unsigned int k=0; k<numLines[2]; ++k)
|
|
{
|
|
hdf5array[n][k][j][i] = array[n][i][j][k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
dataset.write( hdf5array, H5::PredType::NATIVE_FLOAT );
|
|
return true;
|
|
}
|