openEMS/matlab/Tutorials/Patch_Antenna_Array.m

171 lines
5.7 KiB
Matlab
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

function [port nf2ff] = Patch_Antenna_Array(Sim_Path, postproc_only, show_structure, xpos, caps, resist, active )
% [port nf2ff] = Patch_Antenna_Array(Sim_Path, postproc_only, show_structure, xpos, caps, resist, active )
%
% Script to setup the patch array as described in [1].
% Run main script in Patch_Antenna_Phased_Array.m instead!
%
% Sim_Path: Simulation path
% postproc_only: set to post process only 0/1
% show_structure: show the strucuture in AppCSXCAD 0/1
% xpos: the x-position for each antenna is defined
% caps: the port capacity (will override active port)
% resist: port resitance
% active: switch port active
%
% References:
% [1] Y. Yusuf and X. Gong, “A low-cost patch antenna phased array with
% analog beam steering using mutual coupling and reactive loading,” IEEE
% Antennas Wireless Propag. Lett., vol. 7, pp. 8184, 2008.
%
% Tested with
% - Matlab 2011a
% - openEMS v0.0.31
%
% (C) 2013 Thorsten Liebig <thorsten.liebig@gmx.de>
% example
% xpos = [-41 0 41];
% caps = [0.2e-12 0 0.2e-12];
% active = [0 1 0];
% resist = [50 50 50];
%% setup the simulation
physical_constants;
unit = 1e-3; % all length in mm
% patch geometry setup
patch.W = 35; % width
patch.L = 28.3; % length
patch.Ws = 3.8; % width of feeding stub
patch.Gs = 1; % width of feeding gab
patch.l = 6; % length of feeding stub
patch.y0 = 10; % depth of feeding stub into into patch
% patch resonance frequency
f0 = 3e9;
%substrate setup
substrate.name = 'Ro3003';
substrate.epsR = 3;
substrate.kappa = 0.0013 * 2*pi*f0 * EPS0*substrate.epsR;
substrate.thickness = 1.524;
substrate.cells = 4;
substrate.width = patch.W + max(xpos) - min(xpos) + 4*patch.l;
substrate.length = 3*patch.l + patch.L;
% size of the simulation box
AirSpacer = [50 50 30];
edge_res = [-1/3 2/3]*1;
%% setup FDTD parameter & excitation function
fc = 2e9; % 20 dB corner frequency
FDTD = InitFDTD( 'EndCriteria', 1e-4 );
FDTD = SetGaussExcite( FDTD, f0, fc );
BC = [1 1 1 1 1 1]*3;
FDTD = SetBoundaryCond( FDTD, BC );
%% setup CSXCAD geometry & mesh
CSX = InitCSX();
mesh.x = [];
mesh.y = [];
mesh.z = [];
%% create patch
CSX = AddMetal( CSX, 'patch' ); % create a perfect electric conductor (PEC)
for port_nr=1:numel(xpos)
start = [xpos(port_nr)-patch.W/2 patch.l substrate.thickness];
stop = [xpos(port_nr)-patch.Ws/2-patch.Gs patch.l+patch.L substrate.thickness];
CSX = AddBox(CSX,'patch',10, start, stop);
mesh.x = [mesh.x xpos(port_nr)-patch.W/2-edge_res];
start = [xpos(port_nr)+patch.W/2 patch.l substrate.thickness];
stop = [xpos(port_nr)+patch.Ws/2+patch.Gs patch.l+patch.L substrate.thickness];
CSX = AddBox(CSX,'patch',10, start, stop);
mesh.x = [mesh.x xpos(port_nr)+patch.W/2+edge_res];
mesh.y = [mesh.y patch.l-edge_res patch.l+patch.L+edge_res];
start = [xpos(port_nr)-patch.Ws/2-patch.Gs patch.l+patch.y0 substrate.thickness];
stop = [xpos(port_nr)+patch.Ws/2+patch.Gs patch.l+patch.L substrate.thickness];
CSX = AddBox(CSX,'patch',10, start, stop);
% feed line
start = [xpos(port_nr)-patch.Ws/2 patch.l+patch.y0 substrate.thickness];
stop = [xpos(port_nr)+patch.Ws/2 0 substrate.thickness];
CSX = AddBox(CSX,'patch',10, start, stop);
mesh.x = [mesh.x xpos(port_nr)+linspace(-patch.Ws/2-patch.Gs,-patch.Ws/2,3) xpos(port_nr)+linspace(patch.Ws/2,patch.Ws/2+patch.Gs,3)];
start = [xpos(port_nr)-patch.Ws/2 0 0];
stop = [xpos(port_nr)+patch.Ws/2 0 substrate.thickness];
if (caps(port_nr)>0)
CSX = AddLumpedElement(CSX, ['C_' num2str(port_nr)], 2, 'C', caps(port_nr));
CSX = AddBox(CSX,['C_' num2str(port_nr)],10, start, stop);
[CSX port{port_nr}] = AddLumpedPort(CSX, 5 ,port_nr ,inf, start, stop, [0 0 1], 0);
else
% feed port
[CSX port{port_nr}] = AddLumpedPort(CSX, 5 ,port_nr, resist(port_nr), start, stop, [0 0 1], active(port_nr));
end
end
%% create substrate
CSX = AddMaterial( CSX, substrate.name );
CSX = SetMaterialProperty( CSX, substrate.name, 'Epsilon', substrate.epsR, 'Kappa', substrate.kappa );
start = [-substrate.width/2 0 0];
stop = [ substrate.width/2 substrate.length substrate.thickness];
CSX = AddBox( CSX, substrate.name, 0, start, stop );
mesh.x = [mesh.x start(1) stop(1)];
mesh.y = [mesh.y start(2) stop(2)];
% add extra cells to discretize the substrate thickness
mesh.z = [linspace(0,substrate.thickness,substrate.cells+1) mesh.z];
%% create ground (same size as substrate)
CSX = AddMetal( CSX, 'gnd' ); % create a perfect electric conductor (PEC)
start(3)=0;
stop(3) =0;
CSX = AddBox(CSX,'gnd',10,start,stop);
%% finalize the mesh
% generate a smooth mesh with max. cell size: lambda_min / 20
mesh = SmoothMesh(mesh, 2, 1.3);
mesh.x = [mesh.x min(mesh.x)-AirSpacer(1) max(mesh.x)+AirSpacer(1)];
mesh.y = [mesh.y min(mesh.y)-AirSpacer(2) max(mesh.y)+AirSpacer(2)];
mesh.z = [mesh.z min(mesh.z)-AirSpacer(3) max(mesh.z)+2*AirSpacer(3)];
mesh = SmoothMesh(mesh, c0 / (f0+fc) / unit / 20, 1.3);
%% add a nf2ff calc box; size is 3 cells away from MUR boundary condition
start = [mesh.x(4) mesh.y(4) mesh.z(4)];
stop = [mesh.x(end-3) mesh.y(end-3) mesh.z(end-3)];
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop);
mesh = AddPML(mesh,(BC==3)*8);
CSX = DefineRectGrid(CSX, unit, mesh);
%% prepare simulation folder
Sim_CSX = 'patch_array.xml';
if (postproc_only==0)
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder
%% write openEMS compatible xml-file
WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
%% show the structure
if (show_structure>0)
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
end
%% run openEMS
RunOpenEMS( Sim_Path, Sim_CSX);
end