openEMS/Common/processing.cpp

337 lines
8.7 KiB
C++

/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "tools/global.h"
#include "tools/useful.h"
#include "Common/operator_base.h"
#include <algorithm>
#include "processing.h"
#include "time.h"
#include <climits>
Processing::Processing(Engine_Interface_Base* eng_if)
{
m_Eng_Interface = NULL;
SetEngineInterface(eng_if);
Enabled = true;
m_PS_pos = 0;
SetPrecision(12);
ProcessInterval=0;
m_FD_SampleCount=0;
m_FD_Interval=0;
m_weight=1;
m_Flush = false;
m_dualMesh = false;
m_dualTime = false;
m_Mesh_Type = CARTESIAN_MESH;
}
Processing::~Processing()
{
SetEngineInterface(NULL);
file.close();
}
void Processing::Reset()
{
m_PS_pos=0;
}
void Processing::SetEngineInterface(Engine_Interface_Base* eng_if)
{
delete m_Eng_Interface;
m_Eng_Interface = eng_if;
if (m_Eng_Interface)
Op=m_Eng_Interface->GetOperator();
else
Op=NULL;
}
bool Processing::CheckTimestep()
{
if (m_ProcessSteps.size()>m_PS_pos)
{
if (m_ProcessSteps.at(m_PS_pos)==m_Eng_Interface->GetNumberOfTimesteps())
{
++m_PS_pos;
return true;
}
}
if (ProcessInterval)
{
if (m_Eng_Interface->GetNumberOfTimesteps()%ProcessInterval==0) return true;
}
if (m_FD_Interval)
{
if (m_Eng_Interface->GetNumberOfTimesteps()%m_FD_Interval==0) return true;
}
return false;
}
int Processing::GetNextInterval() const
{
if (Enabled==false) return -1;
int next=INT_MAX;
if (m_ProcessSteps.size()>m_PS_pos)
{
next = (int)m_ProcessSteps.at(m_PS_pos)-(int)m_Eng_Interface->GetNumberOfTimesteps();
}
if (ProcessInterval!=0)
{
int next_Interval = (int)ProcessInterval - (int)m_Eng_Interface->GetNumberOfTimesteps()%ProcessInterval;
if (next_Interval<next)
next = next_Interval;
}
//check for FD sample interval
if (m_FD_Interval!=0)
{
int next_Interval = (int)m_FD_Interval - (int)m_Eng_Interface->GetNumberOfTimesteps()%m_FD_Interval;
if (next_Interval<next)
next = next_Interval;
}
return next;
}
void Processing::AddStep(unsigned int step)
{
if (m_ProcessSteps.size()==0)
m_ProcessSteps.push_back(step);
else if (find(m_ProcessSteps.begin(), m_ProcessSteps.end(),step)==m_ProcessSteps.end())
m_ProcessSteps.push_back(step);
}
void Processing::AddSteps(vector<unsigned int> steps)
{
for (size_t n=0; n<steps.size(); ++n)
{
AddStep(steps.at(n));
}
}
void Processing::AddFrequency(double freq)
{
unsigned int nyquistTS = CalcNyquistNum(freq,Op->GetTimestep());
if (nyquistTS == 0)
{
cerr << "Processing::AddFrequency: Requested frequency " << freq << " is too high for the current timestep used... skipping..." << endl;
return;
}
else if (nyquistTS<Op->GetNumberOfNyquistTimesteps())
{
cerr << "Processing::AddFrequency: Warning: Requested frequency " << freq << " is higher than maximum excited frequency..." << endl;
}
if (m_FD_Interval==0)
m_FD_Interval = Op->GetNumberOfNyquistTimesteps();
if (m_FD_Interval>nyquistTS)
m_FD_Interval = nyquistTS;
m_FD_Samples.push_back(freq);
}
void Processing::AddFrequency(vector<double> *freqs)
{
for (size_t n=0; n<freqs->size(); ++n)
{
AddFrequency(freqs->at(n));
}
}
void Processing::DefineStartStopCoord(double* dstart, double* dstop)
{
if (Op->SnapToMesh(dstart,start,m_dualMesh,m_start_inside)==false)
cerr << "Processing::DefineStartStopCoord: Warning: Snapped line outside field domain!!" << endl;
if (Op->SnapToMesh(dstop,stop,m_dualMesh,m_stop_inside)==false)
cerr << "Processing::DefineStartStopCoord: Warning: Snapped line outside field domain!!" << endl;
if (g_settings.showProbeDiscretization())
{
cerr << m_Name << ": snapped coords: (" << Op->GetDiscLine( 0, start[0], m_dualMesh ) << ","
<< Op->GetDiscLine( 1, start[1], m_dualMesh ) << "," << Op->GetDiscLine( 2, start[2], m_dualMesh ) << ") -> ("
<< Op->GetDiscLine( 0, stop[0], m_dualMesh ) << ","<< Op->GetDiscLine( 1, stop[1], m_dualMesh ) << ","
<< Op->GetDiscLine( 2, stop[2], m_dualMesh ) << ")";
cerr << " [" << start[0] << "," << start[1] << "," << start[2] << "] -> ["
<< stop[0] << "," << stop[1] << "," << stop[2] << "]" << endl;
}
}
void Processing::OpenFile( string outfile )
{
if (file.is_open())
file.close();
file.open( outfile.c_str() );
if (!file.is_open())
cerr << "Can't open file: " << outfile << endl;
m_filename = outfile;
}
void Processing::DumpBox2File( string vtkfilenameprefix, bool dualMesh ) const
{
string vtkfilename = vtkfilenameprefix + m_filename + ".vtk";
ofstream file( vtkfilename.c_str() );
if (!file.is_open())
{
cerr << "Processing::DumpBoxes2File(): Can't open file: " << vtkfilename << endl;
return;
}
// normalize coordinates
double s1[3], s2[3];
for (int i=0; i<3; i++)
{
s1[i] = min(Op->GetDiscLine(i,start[i],dualMesh),Op->GetDiscLine(i,stop[i],dualMesh));
s2[i] = max(Op->GetDiscLine(i,start[i],dualMesh),Op->GetDiscLine(i,stop[i],dualMesh));
}
// fix degenerate box/plane -> line (paraview display problem)
if (((s1[0] == s2[0]) && (s1[1] == s2[1])) || ((s1[0] == s2[0]) && (s1[2] == s2[2])) || ((s1[2] == s2[2]) && (s1[1] == s2[1])))
{
// line are not displayed correctly -> enlarge
for (int i=0; i<3; i++)
{
double delta = min( Op->GetEdgeLength( i, start,dualMesh ), Op->GetEdgeLength( i, stop,dualMesh ) ) / Op->GetGridDelta() / 4.0;
s1[i] -= delta;
s2[i] += delta;
}
}
// rescale coordinates
#ifndef OUTPUT_IN_DRAWINGUNITS
double scaling = Op->GetGridDelta();
for (int i=0; i<3; i++)
{
s1[i] *= scaling;
s2[i] *= scaling;
}
#endif
file << "# vtk DataFile Version 2.0" << endl;
file << "" << endl;
file << "ASCII" << endl;
file << "DATASET POLYDATA" << endl;
file << "POINTS 8 float" << endl;
file << s1[0] << " " << s1[1] << " " << s1[2] << endl;
file << s2[0] << " " << s1[1] << " " << s1[2] << endl;
file << s2[0] << " " << s2[1] << " " << s1[2] << endl;
file << s1[0] << " " << s2[1] << " " << s1[2] << endl;
file << s1[0] << " " << s1[1] << " " << s2[2] << endl;
file << s2[0] << " " << s1[1] << " " << s2[2] << endl;
file << s2[0] << " " << s2[1] << " " << s2[2] << endl;
file << s1[0] << " " << s2[1] << " " << s2[2] << endl;
file << "POLYGONS 6 30" << endl;
file << "4 0 1 2 3" << endl;
file << "4 4 5 6 7" << endl;
file << "4 7 6 2 3" << endl;
file << "4 4 5 1 0" << endl;
file << "4 0 4 7 3" << endl;
file << "4 5 6 2 1" << endl;
file.close();
}
void Processing::Dump_FD_Data(vector<double_complex> value, double factor, string filename)
{
if (value.size()==0)
return;
if (value.size()!=m_FD_Samples.size())
{
cerr << "Processing::Dump_FD_Data: Error: Complex value and frequency vector have different size! This should never happend!!!" << endl;
return;
}
ofstream file;
file.open( filename.c_str() );
if (!file.is_open())
cerr << "Can't open file: " << filename << endl;
time_t rawTime;
time(&rawTime);
file << "%dump by openEMS @" << ctime(&rawTime) << "%frequency\treal\timag\n";
for (size_t n=0; n<value.size(); ++n)
{
file << m_FD_Samples.at(n) << "\t" << 2.0 * std::real(value.at(n))*factor << "\t" << 2.0 * std::imag(value.at(n))*factor << "\n";
}
file.close();
}
void ProcessingArray::AddProcessing(Processing* proc)
{
ProcessArray.push_back(proc);
}
void ProcessingArray::FlushNext()
{
for (size_t i=0; i<ProcessArray.size(); ++i)
{
ProcessArray.at(i)->FlushNext();
}
}
void ProcessingArray::Reset()
{
for (size_t i=0; i<ProcessArray.size(); ++i)
{
ProcessArray.at(i)->Reset();
}
}
void ProcessingArray::DeleteAll()
{
for (size_t i=0; i<ProcessArray.size(); ++i)
{
delete ProcessArray.at(i);
}
ProcessArray.clear();
}
void ProcessingArray::PreProcess()
{
for (size_t i=0; i<ProcessArray.size(); ++i) ProcessArray.at(i)->PreProcess();
}
int ProcessingArray::Process()
{
int nextProcess=maxInterval;
//this could be done nicely in parallel??
for (size_t i=0; i<ProcessArray.size(); ++i)
{
int step = ProcessArray.at(i)->Process();
if ((step>0) && (step<nextProcess))
nextProcess=step;
}
return nextProcess;
}
void ProcessingArray::PostProcess()
{
for (size_t i=0; i<ProcessArray.size(); ++i) ProcessArray.at(i)->PostProcess();
}
void ProcessingArray::DumpBoxes2File( string vtkfilenameprefix ) const
{
for (size_t i=0; i<ProcessArray.size(); ++i)
ProcessArray.at(i)->DumpBox2File( vtkfilenameprefix );
}