571 lines
16 KiB
C++
571 lines
16 KiB
C++
/*
|
|
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "engine.h"
|
|
#include "engine_cylinder.h"
|
|
#include "Common/processfields.h"
|
|
#include "operator_cylinder.h"
|
|
#include "extensions/operator_extension.h"
|
|
#include "extensions/operator_ext_cylinder.h"
|
|
#include "tools/useful.h"
|
|
|
|
Operator_Cylinder* Operator_Cylinder::New(unsigned int numThreads)
|
|
{
|
|
cout << "Create cylindrical FDTD operator" << endl;
|
|
Operator_Cylinder* op = new Operator_Cylinder();
|
|
op->setNumThreads(numThreads);
|
|
op->Init();
|
|
return op;
|
|
}
|
|
|
|
Operator_Cylinder::Operator_Cylinder() : Operator_Multithread()
|
|
{
|
|
m_MeshType = CYLINDRICAL;
|
|
m_Cyl_Ext = NULL;
|
|
}
|
|
|
|
Operator_Cylinder::~Operator_Cylinder()
|
|
{
|
|
}
|
|
|
|
|
|
Engine* Operator_Cylinder::CreateEngine() const
|
|
{
|
|
//! create a special cylindrical-engine
|
|
Engine_Cylinder* eng = Engine_Cylinder::New(this, m_numThreads);
|
|
return eng;
|
|
}
|
|
|
|
void Operator_Cylinder::Init()
|
|
{
|
|
CC_closedAlpha = false;
|
|
CC_R0_included = false;
|
|
Operator_Multithread::Init();
|
|
}
|
|
|
|
double Operator_Cylinder::GetRawDiscDelta(int ny, const int pos) const
|
|
{
|
|
if (CC_closedAlpha && ny==1 && pos==-1)
|
|
return (discLines[1][numLines[1]-2] - discLines[1][numLines[1]-3]);
|
|
if (CC_closedAlpha && ny==1 && (pos==(int)numLines[ny]-1))
|
|
return (discLines[1][2] - discLines[1][1]);
|
|
|
|
return Operator_Multithread::GetRawDiscDelta(ny,pos);
|
|
}
|
|
|
|
double Operator_Cylinder::GetMaterial(int ny, const double* coords, int MatType, bool markAsUsed) const
|
|
{
|
|
double l_coords[] = {coords[0],coords[1],coords[2]};
|
|
if (CC_closedAlpha && (coords[1]>GetDiscLine(1,0,false)+2*PI))
|
|
l_coords[1]-=2*PI;
|
|
if (CC_closedAlpha && (coords[1]<GetDiscLine(1,0,false)))
|
|
l_coords[1] += 2*PI;
|
|
return Operator_Multithread::GetMaterial(ny,l_coords,MatType,markAsUsed);
|
|
}
|
|
|
|
int Operator_Cylinder::CalcECOperator( DebugFlags debugFlags )
|
|
{
|
|
// debugs only work with the native vector dumps
|
|
bool natDump = g_settings.NativeFieldDumps();
|
|
g_settings.SetNativeFieldDumps(true);
|
|
int rc = Operator_Multithread::CalcECOperator(debugFlags);
|
|
// reset original settings
|
|
g_settings.SetNativeFieldDumps(natDump);
|
|
return rc;
|
|
}
|
|
|
|
inline unsigned int Operator_Cylinder::GetNumberOfLines(int ny, bool full) const
|
|
{
|
|
if (full)
|
|
return Operator_Multithread::GetNumberOfLines(ny, full);
|
|
|
|
//this is necessary for a correct field processing... cylindrical engine has to reset this by adding +1
|
|
if (CC_closedAlpha && ny==1)
|
|
return Operator_Multithread::GetNumberOfLines(ny, true)-2;
|
|
|
|
return Operator_Multithread::GetNumberOfLines(ny, full);
|
|
}
|
|
|
|
string Operator_Cylinder::GetDirName(int ny) const
|
|
{
|
|
if (ny==0) return "rho";
|
|
if (ny==1) return "alpha";
|
|
if (ny==2) return "z";
|
|
return "";
|
|
}
|
|
|
|
bool Operator_Cylinder::GetYeeCoords(int ny, unsigned int pos[3], double* coords, bool dualMesh) const
|
|
{
|
|
bool ret = Operator_Multithread::GetYeeCoords(ny,pos,coords,dualMesh);
|
|
|
|
if (CC_closedAlpha && (coords[1]>=GetDiscLine(1,0,false)+2*PI))
|
|
coords[1]-=2*PI;
|
|
if (CC_closedAlpha && (coords[1]<GetDiscLine(1,0,false)))
|
|
coords[1]+=2*PI;
|
|
|
|
return ret;
|
|
}
|
|
|
|
double Operator_Cylinder::GetNodeWidth(int ny, const unsigned int pos[3], bool dualMesh) const
|
|
{
|
|
if ((ny<0) || (ny>2)) return 0.0;
|
|
if (pos[ny]>=numLines[ny]) return 0.0;
|
|
double width = Operator_Multithread::GetEdgeLength(ny,pos,!dualMesh);
|
|
if (ny==1)
|
|
width *= GetDiscLine(0,pos[0],dualMesh);
|
|
return width;
|
|
}
|
|
|
|
double Operator_Cylinder::GetNodeWidth(int ny, const int pos[3], bool dualMesh) const
|
|
{
|
|
if ( (pos[0]<0) || (pos[1]<0 && CC_closedAlpha==false) || (pos[2]<0) )
|
|
return 0.0;
|
|
|
|
unsigned int uiPos[]={(unsigned int)pos[0],(unsigned int)pos[1],(unsigned int)pos[2]};
|
|
if (pos[1]<0 && CC_closedAlpha==true)
|
|
uiPos[1]+=numLines[1]-2;
|
|
|
|
return GetNodeWidth(ny, uiPos, dualMesh);
|
|
}
|
|
|
|
double Operator_Cylinder::GetNodeArea(int ny, const unsigned int pos[3], bool dualMesh) const
|
|
{
|
|
if (pos[ny]>=numLines[ny]) return 0.0;
|
|
if (pos[0]>=numLines[0]) return 0.0;
|
|
if (ny==2)
|
|
{
|
|
double da = Operator_Multithread::GetEdgeLength(1,pos,dualMesh)/gridDelta;
|
|
double r1,r2;
|
|
|
|
if (dualMesh)
|
|
{
|
|
r1 = GetDiscLine(0,pos[0],false)*gridDelta;
|
|
r2 = r1 + GetEdgeLength(0,pos,false);
|
|
}
|
|
else
|
|
{
|
|
r2 = GetDiscLine(0,pos[0],!dualMesh)*gridDelta;
|
|
r1 = r2 - GetEdgeLength(0,pos,true);
|
|
}
|
|
|
|
if (r1<=0)
|
|
return da/2 * pow(r2,2);
|
|
else
|
|
return da/2* (pow(r2,2) - pow(r1,2));
|
|
}
|
|
|
|
return Operator_Multithread::GetNodeArea(ny,pos,dualMesh);
|
|
}
|
|
|
|
double Operator_Cylinder::GetNodeArea(int ny, const int pos[3], bool dualMesh) const
|
|
{
|
|
if ( (pos[0]<0) || (pos[1]<0 && CC_closedAlpha==false) || (pos[2]<0) )
|
|
return 0.0;
|
|
|
|
unsigned int uiPos[]={(unsigned int)pos[0],(unsigned int)pos[1],(unsigned int)pos[2]};
|
|
if (pos[1]<0 && CC_closedAlpha==true)
|
|
uiPos[1]+=numLines[1]-2;
|
|
|
|
return GetNodeArea(ny, uiPos, dualMesh);
|
|
}
|
|
|
|
double Operator_Cylinder::GetEdgeLength(int ny, const unsigned int pos[3], bool dualMesh) const
|
|
{
|
|
double length = Operator_Multithread::GetEdgeLength(ny,pos,dualMesh);
|
|
if (ny!=1)
|
|
return length;
|
|
return length * GetDiscLine(0,pos[0],dualMesh);
|
|
}
|
|
|
|
double Operator_Cylinder::GetCellVolume(const unsigned int pos[3], bool dualMesh) const
|
|
{
|
|
return GetEdgeArea(2,pos,dualMesh)*GetEdgeLength(2,pos,dualMesh);
|
|
}
|
|
|
|
double Operator_Cylinder::GetEdgeArea(int ny, const unsigned int pos[3], bool dualMesh) const
|
|
{
|
|
if (ny!=0)
|
|
return GetNodeArea(ny,pos,dualMesh);
|
|
|
|
return GetEdgeLength(1,pos,!dualMesh) * GetEdgeLength(2,pos,!dualMesh);
|
|
}
|
|
|
|
double Operator_Cylinder::FitToAlphaRange(double a_coord, bool fullMesh) const
|
|
{
|
|
double min = GetDiscLine(1,0);
|
|
double max = GetDiscLine(1,GetNumberOfLines(1, fullMesh)-1);
|
|
if ((a_coord>=min) && (a_coord<=max))
|
|
return a_coord;
|
|
while (a_coord<min)
|
|
{
|
|
a_coord+=2*PI;
|
|
if (a_coord>max)
|
|
return a_coord-2*PI;
|
|
if (a_coord>min)
|
|
return a_coord;
|
|
}
|
|
while (a_coord>max)
|
|
{
|
|
a_coord-=2*PI;
|
|
if (a_coord<min)
|
|
return a_coord+2*PI;
|
|
if (a_coord<max)
|
|
return a_coord;
|
|
}
|
|
// this cannot happen
|
|
return a_coord;
|
|
}
|
|
|
|
int Operator_Cylinder::MapAlphaIndex2Range(int pos) const
|
|
{
|
|
if (!CC_closedAlpha)
|
|
return pos;
|
|
if (pos<0)
|
|
return (int)numLines[1]+pos-2;
|
|
else if (pos>=(int)numLines[1]-2)
|
|
return pos-(int)numLines[1]+2;
|
|
else
|
|
return pos;
|
|
}
|
|
|
|
bool Operator_Cylinder::GetCellCenterMaterialAvgCoord(const int pos[3], double coord[3]) const
|
|
{
|
|
if (!CC_closedAlpha || ((pos[1]>=0) && (pos[1]<(int)numLines[1]-2)))
|
|
{
|
|
return Operator_Multithread::GetCellCenterMaterialAvgCoord(pos, coord);
|
|
}
|
|
if ((pos[0]<0) || (pos[2]<0))
|
|
return false;
|
|
int l_pos[3] = {pos[0], 0, pos[2]};
|
|
l_pos[1] = MapAlphaIndex2Range(pos[1]);
|
|
return Operator_Multithread::GetCellCenterMaterialAvgCoord(l_pos, coord);
|
|
}
|
|
|
|
unsigned int Operator_Cylinder::SnapToMeshLine(int ny, double coord, bool &inside, bool dualMesh, bool fullMesh) const
|
|
{
|
|
if (ny==1)
|
|
coord=FitToAlphaRange(coord);
|
|
return Operator_Multithread::SnapToMeshLine(ny, coord, inside, dualMesh, fullMesh);
|
|
}
|
|
|
|
int Operator_Cylinder::SnapBox2Mesh(const double* start, const double* stop, unsigned int* uiStart, unsigned int* uiStop, bool dualMesh, bool fullMesh, int SnapMethod, bool* bStartIn, bool* bStopIn) const
|
|
{
|
|
double a_min = GetDiscLine(1,0);
|
|
double a_max = GetDiscLine(1,GetNumberOfLines(1,fullMesh)-1);
|
|
|
|
double a_size = stop[1] - start[1];
|
|
double a_center = FitToAlphaRange(0.5*(stop[1]+start[1]));
|
|
double a_start = a_center-a_size/2;
|
|
double a_stop = a_start + a_size;
|
|
if (a_stop>a_max)
|
|
a_stop=a_max;
|
|
if (a_stop<a_min)
|
|
a_stop=a_min;
|
|
if (a_start>a_max)
|
|
a_start=a_max;
|
|
if (a_start<a_min)
|
|
a_start=a_min;
|
|
|
|
double l_start[3] = {start[0], a_start, start[2]};
|
|
double l_stop[3] = {stop[0] , a_stop , stop[2] };
|
|
return Operator_Multithread::SnapBox2Mesh(l_start, l_stop, uiStart, uiStop, dualMesh, fullMesh, SnapMethod, bStartIn, bStopIn);
|
|
}
|
|
|
|
int Operator_Cylinder::SnapLine2Mesh(const double* start, const double* stop, unsigned int* uiStart, unsigned int* uiStop, bool dualMesh, bool fullMesh) const
|
|
{
|
|
int ret = Operator_Multithread::SnapLine2Mesh(start, stop, uiStart, uiStop, dualMesh, fullMesh);
|
|
|
|
if ((stop[1]>start[1]) && (uiStop[1]<uiStart[1]) && (uiStop[1]==0))
|
|
uiStop[1] = GetNumberOfLines(1, fullMesh)-1-(int)CC_closedAlpha;
|
|
if ((stop[1]<start[1]) && (uiStop[1]>uiStart[1]) && (uiStop[1]==GetNumberOfLines(1, fullMesh)-1-(int)CC_closedAlpha))
|
|
uiStop[1] = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
Grid_Path Operator_Cylinder::FindPath(double start[], double stop[])
|
|
{
|
|
double l_start[3];
|
|
double l_stop[3];
|
|
|
|
for (int n=0;n<3;++n)
|
|
{
|
|
l_start[n] = start[n];
|
|
l_stop[n] = stop[n];
|
|
}
|
|
|
|
while (fabs(l_stop[1]-l_start[1])>PI)
|
|
{
|
|
if (l_stop[1]>l_start[1])
|
|
l_stop[1]-=2*PI;
|
|
else
|
|
l_stop[1]+=2*PI;
|
|
}
|
|
|
|
double help=0;
|
|
if (l_start[1]>l_stop[1])
|
|
{
|
|
for (int n=0;n<3;++n)
|
|
{
|
|
help = l_start[n];
|
|
l_start[n] = l_stop[n];
|
|
l_stop[n] = help;
|
|
}
|
|
}
|
|
|
|
double a_start = FitToAlphaRange(l_start[1]);
|
|
double a_stop = FitToAlphaRange(l_stop[1]);
|
|
|
|
if (a_stop >= a_start)
|
|
{
|
|
l_start[1] = a_start;
|
|
l_stop[1] = a_stop;
|
|
return Operator_Multithread::FindPath(l_start, l_stop);
|
|
}
|
|
|
|
// if a-stop fitted to disc range is now smaller than a-start, it must step over the a-bounds...
|
|
|
|
Grid_Path path;
|
|
for (int n=0;n<3;++n)
|
|
{
|
|
if ((l_start[n]<GetDiscLine(n,0)) && (l_stop[n]<GetDiscLine(n,0)))
|
|
return path; //lower bound violation
|
|
if ((l_start[n]>GetDiscLine(n,GetNumberOfLines(n,true)-1)) && (l_stop[n]>GetDiscLine(n,GetNumberOfLines(n,true)-1)))
|
|
return path; //upper bound violation
|
|
}
|
|
|
|
if (g_settings.GetVerboseLevel()>2)
|
|
cerr << __func__ << ": A path was leaving the alpha-direction mesh..." << endl;
|
|
|
|
// this section comes into play, if the line moves over the angulare mesh-end/start
|
|
// we try to have one part of the path on both "ends" of the mesh and stitch them together
|
|
|
|
Grid_Path path1;
|
|
Grid_Path path2;
|
|
|
|
// calculate the intersection of the line with the a-max boundary
|
|
double p0[3],p1[3],p2[3];
|
|
for (int n=0;n<3;++n)
|
|
{
|
|
p0[n] = GetDiscLine(n,0);
|
|
p1[n] = p0[n];
|
|
p2[n] = p0[n];
|
|
}
|
|
p0[1] = GetDiscLine(1,GetNumberOfLines(1,true)-1-(int)CC_closedAlpha);
|
|
p1[1] = p0[1];
|
|
p2[1] = p0[1];
|
|
p1[0] = discLines[0][numLines[0]-1];
|
|
p2[2] = discLines[2][numLines[2]-1];
|
|
|
|
TransformCoordSystem(p0,p0,m_MeshType,CARTESIAN);
|
|
TransformCoordSystem(p1,p1,m_MeshType,CARTESIAN);
|
|
TransformCoordSystem(p2,p2,m_MeshType,CARTESIAN);
|
|
|
|
double c_start[3],c_stop[3];
|
|
TransformCoordSystem(l_start,c_start,m_MeshType,CARTESIAN);
|
|
TransformCoordSystem(l_stop,c_stop,m_MeshType,CARTESIAN);
|
|
double intersect[3];
|
|
double dist;
|
|
int ret = LinePlaneIntersection(p0,p1,p2,c_start,c_stop,intersect,dist);
|
|
if (ret<0)
|
|
{
|
|
cerr << __func__ << ": Error, unable to calculate intersection, this should not happen!" << endl;
|
|
return path; // return empty path;
|
|
}
|
|
|
|
if (ret==0)
|
|
{
|
|
TransformCoordSystem(intersect,intersect,CARTESIAN,m_MeshType);
|
|
intersect[1] = GetDiscLine(1,GetNumberOfLines(1,true)-1-(int)CC_closedAlpha);
|
|
l_start[1] = FitToAlphaRange(l_start[1]);
|
|
path1 = Operator::FindPath(l_start, intersect);
|
|
if (g_settings.GetVerboseLevel()>2)
|
|
cerr << __func__ << ": Intersection top: " << intersect[0] << "," << intersect[1] << "," << intersect[2] << endl;
|
|
} //otherwise the path was not intersecting the upper a-bound...
|
|
|
|
if (CC_closedAlpha==false)
|
|
{
|
|
for (int n=0;n<3;++n)
|
|
{
|
|
p0[n] = GetDiscLine(n,0);
|
|
p1[n] = p0[n];
|
|
p2[n] = p0[n];
|
|
}
|
|
p1[0] = discLines[0][numLines[0]-1];
|
|
p2[2] = discLines[2][numLines[2]-1];
|
|
|
|
TransformCoordSystem(p0,p0,m_MeshType,CARTESIAN);
|
|
TransformCoordSystem(p1,p1,m_MeshType,CARTESIAN);
|
|
TransformCoordSystem(p2,p2,m_MeshType,CARTESIAN);
|
|
|
|
TransformCoordSystem(l_start,c_start,m_MeshType,CARTESIAN);
|
|
TransformCoordSystem(l_stop,c_stop,m_MeshType,CARTESIAN);
|
|
|
|
ret = LinePlaneIntersection(p0,p1,p2,c_start,c_stop,intersect,dist);
|
|
TransformCoordSystem(intersect,intersect,CARTESIAN,m_MeshType);
|
|
}
|
|
|
|
if (ret==0)
|
|
{
|
|
intersect[1] = GetDiscLine(1,0);
|
|
l_stop[1] = FitToAlphaRange(l_stop[1]);
|
|
path2 = Operator::FindPath(intersect, l_stop);
|
|
if (g_settings.GetVerboseLevel()>2)
|
|
cerr << __func__ << ": Intersection bottom: " << intersect[0] << "," << intersect[1] << "," << intersect[2] << endl;
|
|
}
|
|
|
|
//combine path
|
|
for (size_t t=0; t<path1.dir.size(); ++t)
|
|
{
|
|
path.posPath[0].push_back(path1.posPath[0].at(t));
|
|
path.posPath[1].push_back(path1.posPath[1].at(t));
|
|
path.posPath[2].push_back(path1.posPath[2].at(t));
|
|
path.dir.push_back(path1.dir.at(t));
|
|
}
|
|
for (size_t t=0; t<path2.dir.size(); ++t)
|
|
{
|
|
path.posPath[0].push_back(path2.posPath[0].at(t));
|
|
path.posPath[1].push_back(path2.posPath[1].at(t));
|
|
path.posPath[2].push_back(path2.posPath[2].at(t));
|
|
path.dir.push_back(path2.dir.at(t));
|
|
}
|
|
|
|
if (CC_closedAlpha==true)
|
|
for (size_t t=0; t<path.dir.size(); ++t)
|
|
{
|
|
if ( ((path.dir.at(t)==0) || (path.dir.at(t)==2)) && (path.posPath[1].at(t)==0))
|
|
path.posPath[1].at(t) = numLines[1]-2;
|
|
}
|
|
|
|
return path;
|
|
}
|
|
|
|
bool Operator_Cylinder::SetupCSXGrid(CSRectGrid* grid)
|
|
{
|
|
unsigned int alphaNum;
|
|
double* alphaLines = NULL;
|
|
alphaLines = grid->GetLines(1,alphaLines,alphaNum,true);
|
|
|
|
double minmaxA = fabs(alphaLines[alphaNum-1]-alphaLines[0]);
|
|
if (fabs(minmaxA-2*PI) < OPERATOR_CYLINDER_CLOSED_ALPHA_THRESHOLD)
|
|
{
|
|
if (g_settings.GetVerboseLevel()>0)
|
|
cout << "Operator_Cylinder::SetupCSXGrid: Alpha is a full 2*PI => closed Cylinder..." << endl;
|
|
CC_closedAlpha = true;
|
|
grid->SetLine(1,alphaNum-1,2*PI+alphaLines[0]);
|
|
grid->AddDiscLine(1,2*PI+alphaLines[1]);
|
|
}
|
|
else if (minmaxA>2*PI)
|
|
{
|
|
cerr << "Operator_Cylinder::SetupCSXGrid: Alpha Max-Min must not be larger than 2*PI!!!" << endl;
|
|
Reset();
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
CC_closedAlpha=false;
|
|
}
|
|
|
|
CC_R0_included = false;
|
|
if (grid->GetLine(0,0)<0)
|
|
{
|
|
cerr << "Operator_Cylinder::SetupCSXGrid: r<0 not allowed in Cylinder Coordinates!!!" << endl;
|
|
Reset();
|
|
return false;
|
|
}
|
|
else if (grid->GetLine(0,0)==0.0)
|
|
{
|
|
if (g_settings.GetVerboseLevel()>0)
|
|
cout << "Operator_Cylinder::SetupCSXGrid: r=0 included..." << endl;
|
|
CC_R0_included = CC_closedAlpha; //needed for correct ec-calculation, deactivate if closed cylinder is false... --> E_r = 0 anyways
|
|
|
|
// use conservative timestep for a mesh including the r==0 singularity
|
|
m_TimeStepVar = 1;
|
|
}
|
|
|
|
#ifdef MPI_SUPPORT
|
|
// Setup an MPI split in alpha direction for a closed cylinder
|
|
CC_MPI_Alpha = false;
|
|
if ((m_NeighborUp[1]>=0) || (m_NeighborDown[1]>=0)) //check for MPI split in alpha direction
|
|
{
|
|
double minmaxA = 2*PI;// fabs(m_OrigDiscLines[1][m_OrigNumLines[1]-1]-m_OrigDiscLines[1][0]);
|
|
if (fabs(minmaxA-2*PI) < OPERATOR_CYLINDER_CLOSED_ALPHA_THRESHOLD) //check for closed alpha MPI split
|
|
{
|
|
CC_MPI_Alpha = true;
|
|
if (m_OrigDiscLines[0][0]==0)
|
|
{
|
|
cerr << "Operator_Cylinder::SetupCSXGrid: Error: MPI split in alpha direction for closed cylinder including r==0 is currently not supported! Exit!" << endl;
|
|
exit(-2);
|
|
}
|
|
|
|
if (m_NeighborUp[1]<0) //check if this process is at the alpha-end
|
|
{
|
|
grid->SetLine(1,alphaNum-1,2*PI+m_OrigDiscLines[1][0]);
|
|
grid->AddDiscLine(1,2*PI+m_OrigDiscLines[1][1]);
|
|
|
|
SetNeighborUp(1,m_ProcTable[m_ProcTablePos[0]][0][m_ProcTablePos[2]]);
|
|
}
|
|
|
|
if (m_NeighborDown[1]<0) //check if this process is at the alpha-start
|
|
{
|
|
SetNeighborDown(1,m_ProcTable[m_ProcTablePos[0]][m_SplitNumber[1]-1][m_ProcTablePos[2]]);
|
|
}
|
|
|
|
//Note: the process table will not reflect this up/down neighbors necessary for a closed cylinder
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (Operator_Multithread::SetupCSXGrid(grid)==false)
|
|
return false;
|
|
|
|
if (CC_closedAlpha || CC_R0_included)
|
|
{
|
|
m_Cyl_Ext = new Operator_Ext_Cylinder(this);
|
|
this->AddExtension(m_Cyl_Ext);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Operator_Cylinder::ApplyMagneticBC(bool* dirs)
|
|
{
|
|
if (dirs==NULL) return;
|
|
if (CC_closedAlpha)
|
|
{
|
|
dirs[2]=0;
|
|
dirs[3]=0; //no PMC in alpha directions...
|
|
}
|
|
if (CC_R0_included)
|
|
{
|
|
dirs[0]=0; //no PMC in r_min directions...
|
|
}
|
|
Operator_Multithread::ApplyMagneticBC(dirs);
|
|
}
|
|
|
|
void Operator_Cylinder::AddExtension(Operator_Extension* op_ext)
|
|
{
|
|
if (op_ext->IsCylinderCoordsSave(CC_closedAlpha, CC_R0_included))
|
|
Operator_Multithread::AddExtension(op_ext);
|
|
else
|
|
{
|
|
cerr << "Operator_Cylinder::AddExtension: Warning: Operator extension \"" << op_ext->GetExtensionName() << "\" is not compatible with cylinder-coords!! skipping...!" << endl;
|
|
delete op_ext;
|
|
}
|
|
}
|