/* * Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "tools/global.h" #include "processfields.h" #include "FDTD/engine_interface_fdtd.h" ProcessFields::ProcessFields(Engine_Interface_Base* eng_if) : Processing(eng_if) { m_DumpType = E_FIELD_DUMP; // vtk-file is default m_fileType = VTK_FILETYPE; m_SampleType = NONE; SetPrecision(6); m_dualTime = false; for (int n=0; n<3; ++n) { numLines[n]=0; posLines[n]=NULL; discLines[n]=NULL; subSample[n]=1; optResolution[n]=0; } } ProcessFields::~ProcessFields() { for (int n=0; n<3; ++n) { delete[] posLines[n]; posLines[n]=NULL; delete[] discLines[n]; discLines[n]=NULL; } } string ProcessFields::GetFieldNameByType(DumpType type) { switch (type) { case E_FIELD_DUMP: return "E-Field"; case H_FIELD_DUMP: return "H-Field"; case J_FIELD_DUMP: return "J-Field"; case ROTH_FIELD_DUMP: return "RotH-Field"; case SAR_LOCAL_DUMP: return "SAR-local"; } return "unknown field"; } void ProcessFields::InitProcess() { if (Enabled==false) return; CalcMeshPos(); } void ProcessFields::SetDumpMode(Engine_Interface_Base::InterpolationType mode) { m_Eng_Interface->SetInterpolationType(mode); if (mode==Engine_Interface_Base::CELL_INTERPOLATE) m_dualMesh=true; else if (mode==Engine_Interface_Base::NODE_INTERPOLATE) m_dualMesh=false; //else keep the preset/user defined case } void ProcessFields::DefineStartStopCoord(double* dstart, double* dstop) { Processing::DefineStartStopCoord(dstart,dstop); // normalize order of start and stop for (int n=0; n<3; ++n) { if (start[n]>stop[n]) { unsigned int help = start[n]; start[n]=stop[n]; stop[n]=help; } } } double ProcessFields::CalcTotalEnergy() const { double energy=0.0; Engine_Interface_FDTD* EI_FDTD = dynamic_cast(m_Eng_Interface); if (EI_FDTD) { const Engine* Eng = EI_FDTD->GetFDTDEngine(); unsigned int pos[3]; for (pos[0]=0; pos[0]GetNumberOfLines(0); ++pos[0]) { for (pos[1]=0; pos[1]GetNumberOfLines(1); ++pos[1]) { for (pos[2]=0; pos[2]GetNumberOfLines(2); ++pos[2]) { energy+=fabs(Eng->GetVolt(0,pos[0],pos[1],pos[2]) * Eng->GetCurr(1,pos[0],pos[1],pos[2])); energy+=fabs(Eng->GetVolt(0,pos[0],pos[1],pos[2]) * Eng->GetCurr(2,pos[0],pos[1],pos[2])); energy+=fabs(Eng->GetVolt(1,pos[0],pos[1],pos[2]) * Eng->GetCurr(0,pos[0],pos[1],pos[2])); energy+=fabs(Eng->GetVolt(1,pos[0],pos[1],pos[2]) * Eng->GetCurr(2,pos[0],pos[1],pos[2])); energy+=fabs(Eng->GetVolt(2,pos[0],pos[1],pos[2]) * Eng->GetCurr(0,pos[0],pos[1],pos[2])); energy+=fabs(Eng->GetVolt(2,pos[0],pos[1],pos[2]) * Eng->GetCurr(1,pos[0],pos[1],pos[2])); } } } } return energy*0.5; } void ProcessFields::SetSubSampling(unsigned int subSampleRate, int dir) { if (dir>2) return; if (dir<0) { subSample[0]=subSampleRate; subSample[1]=subSampleRate; subSample[2]=subSampleRate; } else subSample[dir]=subSampleRate; m_SampleType = SUBSAMPLE; } void ProcessFields::SetOptResolution(double optRes, int dir) { if (dir>2) return; if (dir<0) { optResolution[0]=optRes; optResolution[1]=optRes; optResolution[2]=optRes; } else optResolution[dir]=optRes; m_SampleType = OPT_RESOLUTION; } void ProcessFields::CalcMeshPos() { if ((m_SampleType==SUBSAMPLE) || (m_SampleType==NONE)) { vector tmp_pos; for (int n=0; n<3; ++n) { // construct new discLines tmp_pos.clear(); for (unsigned int i=start[n]; i<=stop[n]; i+=subSample[n]) tmp_pos.push_back(i); numLines[n] = tmp_pos.size(); delete[] discLines[n]; discLines[n] = new double[numLines[n]]; delete[] posLines[n]; posLines[n] = new unsigned int[numLines[n]]; for (unsigned int i=0; iGetDiscLine(n,tmp_pos.at(i),m_dualMesh); } } } if ((m_SampleType==OPT_RESOLUTION)) { vector tmp_pos; double oldPos=0; for (int n=0; n<3; ++n) { // construct new discLines tmp_pos.clear(); tmp_pos.push_back(start[n]); oldPos=Op->GetDiscLine(n,start[n],m_dualMesh); for (unsigned int i=start[n]+1; i<=stop[n]-1; ++i) { if ( (Op->GetDiscLine(n,i+1,m_dualMesh)-oldPos) >= optResolution[n]) { tmp_pos.push_back(i); oldPos=Op->GetDiscLine(n,i,m_dualMesh); } } if (start[n]!=stop[n]) tmp_pos.push_back(stop[n]); numLines[n] = tmp_pos.size(); delete[] discLines[n]; discLines[n] = new double[numLines[n]]; delete[] posLines[n]; posLines[n] = new unsigned int[numLines[n]]; for (unsigned int i=0; iGetDiscLine(n,tmp_pos.at(i),m_dualMesh); } } } } void ProcessFields::WriteVTKHeader(ofstream &file, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, MeshType meshT, double discLines_scaling) { if (meshT==CARTESIAN_MESH) WriteVTKCartesianGridHeader(file, discLines, numLines, precision, header_info, discLines_scaling); else if (meshT==CYLINDRICAL_MESH) WriteVTKCylindricalGridHeader(file, discLines, numLines, precision, header_info, discLines_scaling); else cerr << "ProcessFields::WriteVTKHeader: Warning: unknown mesh type, skipping header -> file will be invalid..." << endl; } void ProcessFields::WriteVTKCartesianGridHeader(ofstream &file, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, double discLines_scaling) { file << "# vtk DataFile Version 2.0" << endl; file << "Rectilinear Grid openEMS_ProcessFields"; if (!header_info.empty()) file << " " << header_info; file << endl; file << "ASCII" << endl; file << "DATASET RECTILINEAR_GRID " << endl; file << "DIMENSIONS " << numLines[0] << " " << numLines[1] << " " << numLines[2] << endl; file << "X_COORDINATES " << numLines[0] << " " << __VTK_DATA_TYPE__ << endl; for (unsigned int i=0; icreateDataSet( names[n].c_str(), datatype, dataspace ); //convert to float... float* array = new float[numLines[n]]; for (unsigned int i=0; i const* const* const* const* array, unsigned int const* numLines, float weight, float frequency) { const H5std_string FILE_NAME(filename); const H5std_string DATASET_NAME_RE( name + "_real"); const H5std_string DATASET_NAME_IM( name + "_imag"); H5::H5File file( FILE_NAME, H5F_ACC_RDWR ); H5::Group group( file.openGroup( groupName )); hsize_t t_dimsf[] = {1}; H5::DataSpace t_dataspace( 1, t_dimsf ); hsize_t dimsf[4]; // dataset dimensions dimsf[0] = 3; dimsf[1] = numLines[2]; dimsf[2] = numLines[1]; dimsf[3] = numLines[0]; H5::DataSpace dataspace( 4, dimsf ); H5::FloatType datatype( H5::PredType::NATIVE_FLOAT ); //create and write real part H5::DataSet dataset = group.createDataSet( DATASET_NAME_RE, datatype, dataspace ); H5::Attribute attr = dataset.createAttribute("frequency",H5::PredType::NATIVE_FLOAT,t_dataspace); attr.write( H5::PredType::NATIVE_FLOAT , &frequency); // I have not the slightest idea why this array-copy action is necessary... but it's the only way hdf5 does what it is supposed to do anyway!! // at least it is save in case FDTD_FLOAT was defined as double... // why does hdf5 write the dimensions backwards??? or matlab??? unsigned long pos = 0; float *hdf5array = new float[3*numLines[0]*numLines[1]*numLines[2]]; for (int n=0; n<3; ++n) { for (unsigned int k=0; k(numLines); switch (m_DumpType) { case E_FIELD_DUMP: case SAR_LOCAL_DUMP: for (unsigned int i=0; iGetEField(pos,out); field[0][i][j][k] = out[0]; field[1][i][j][k] = out[1]; field[2][i][j][k] = out[2]; } } } return field; case H_FIELD_DUMP: for (unsigned int i=0; iGetHField(pos,out); field[0][i][j][k] = out[0]; field[1][i][j][k] = out[1]; field[2][i][j][k] = out[2]; } } } return field; case J_FIELD_DUMP: for (unsigned int i=0; iGetJField(pos,out); field[0][i][j][k] = out[0]; field[1][i][j][k] = out[1]; field[2][i][j][k] = out[2]; } } } return field; case ROTH_FIELD_DUMP: for (unsigned int i=0; iGetRotHField(pos,out); field[0][i][j][k] = out[0]; field[1][i][j][k] = out[1]; field[2][i][j][k] = out[2]; } } } return field; } cerr << "ProcessFields::CalcField(): Error, unknown dump type..." << endl; return field; }