/* * Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "engine.h" #include "processfields.h" #include "operator_cylinder.h" #include "operator_extension.h" #include "operator_ext_cylinder.h" Operator_Cylinder* Operator_Cylinder::New(unsigned int numThreads) { cout << "Create cylindrical FDTD operator" << endl; Operator_Cylinder* op = new Operator_Cylinder(); op->setNumThreads(numThreads); op->Init(); return op; } Operator_Cylinder::Operator_Cylinder() : __OP_CYLINDER_BASE_CLASS__() { m_MeshType = ProcessFields::CYLINDRICAL_MESH; } Operator_Cylinder::~Operator_Cylinder() { __OP_CYLINDER_BASE_CLASS__::Reset(); } void Operator_Cylinder::Init() { CC_closedAlpha = false; CC_R0_included = false; __OP_CYLINDER_BASE_CLASS__::Init(); } void Operator_Cylinder::Reset() { __OP_CYLINDER_BASE_CLASS__::Reset(); } void Operator_Cylinder::InitOperator() { __OP_CYLINDER_BASE_CLASS__::InitOperator(); } inline unsigned int Operator_Cylinder::GetNumberOfLines(int ny) const { //this is necessary for a correct field processing... cylindrical engine has to reset this by adding +1 if (CC_closedAlpha && ny==1) return numLines[1]-1; return numLines[ny]; } string Operator_Cylinder::GetDirName(int ny) const { if (ny==0) return "rho"; if (ny==1) return "alpha"; if (ny==2) return "z"; return ""; } double Operator_Cylinder::GetMeshDelta(int n, const int* pos, bool dualMesh) const { double delta = __OP_CYLINDER_BASE_CLASS__::GetMeshDelta(n,pos,dualMesh); if (delta==0) return delta; if (n==1) { return delta * GetDiscLine(0,pos[0],dualMesh); } return delta; } double Operator_Cylinder::GetNodeArea(int ny, const int pos[3], bool dualMesh) const { if (ny==2) { double da = __OP_CYLINDER_BASE_CLASS__::GetMeshDelta(1,pos,dualMesh)/gridDelta; double r1,r2; if (!dualMesh) { r1 = (discLines[0][pos[0]] - fabs(MainOp->GetIndexDelta(0,pos[0]-1))/2.0)*gridDelta; r2 = (discLines[0][pos[0]] + fabs(MainOp->GetIndexDelta(0,pos[0] ))/2.0)*gridDelta; } else { r1 = discLines[0][pos[0]]*gridDelta; r2 = (discLines[0][pos[0]] + fabs(MainOp->GetIndexDelta(0,pos[0])))*gridDelta; } if (r1<0) return da * pow(r2,2); return da/2* (pow(r2,2) - pow(r1,2)); } return __OP_CYLINDER_BASE_CLASS__::GetNodeArea(ny,pos,dualMesh); } bool Operator_Cylinder::SetGeometryCSX(ContinuousStructure* geo) { if (__OP_CYLINDER_BASE_CLASS__::SetGeometryCSX(geo)==false) return false; double minmaxA = fabs(discLines[1][numLines[1]-1]-discLines[1][0]); if (fabs(minmaxA-2*PI) < (2*PI)/10/numLines[1]) //check minmaxA smaller then a tenth of average alpha-width { cout << "Operator_Cylinder::SetGeometryCSX: Alpha is a full 2*PI => closed Cylinder..." << endl; CC_closedAlpha = true; discLines[1][numLines[1]-1] = discLines[1][0] + 2*PI; cerr << "Operator_Cylinder::SetGeometryCSX: Warning, not handling the disc-line width and material averaging correctly yet for a closed cylinder..." << endl; if (MainOp->GetIndexDelta(1,0)-MainOp->GetIndexDelta(1,numLines[1]-2) > (2*PI)/10/numLines[1]) { cerr << "Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... deviation to large..." << MainOp->GetIndexDelta(1,0) - MainOp->GetIndexDelta(1,numLines[1]-2) << endl; exit(1); } if (MainOp->GetIndexDelta(1,0)-MainOp->GetIndexDelta(1,numLines[1]-2) > 0) { cerr << "Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... auto correction of deviation: " << MainOp->GetIndexDelta(1,0) - MainOp->GetIndexDelta(1,numLines[1]-2) << endl; discLines[1][numLines[1]-2] = discLines[1][numLines[1]-1]-MainOp->GetIndexDelta(1,0); } } else if (minmaxA>2*PI) {cerr << "Operator_Cylinder::SetGeometryCSX: Alpha Max-Min must not be larger than 2*PI!!!" << endl; Reset(); return false;} else { CC_closedAlpha=false; } if (discLines[0][0]<0) {cerr << "Operator_Cylinder::SetGeometryCSX: r<0 not allowed in Cylinder Coordinates!!!" << endl; Reset(); return false;} else if (discLines[0][0]==0.0) { cout << "Operator_Cylinder::SetGeometryCSX: r=0 included..." << endl; CC_R0_included= true; //also needed for correct ec-calculation } if (CC_closedAlpha || CC_R0_included) this->AddExtension(new Operator_Ext_Cylinder(this)); return true; } void Operator_Cylinder::ApplyElectricBC(bool* dirs) { if (dirs==NULL) return; if (CC_closedAlpha) { dirs[2]=0;dirs[3]=0; //no PEC in alpha directions... } if (CC_R0_included) { // E in alpha direction ( aka volt[1][x][y][z] ) is not defined for r==0 --> always zero... unsigned int pos[3] = {0,0,0}; for (pos[1]=0;pos[1]GetIndexDelta(n,pos[n]); double deltaP=MainOp->GetIndexDelta(nP,pos[nP]); double deltaPP=MainOp->GetIndexDelta(nPP,pos[nPP]); double delta_M=MainOp->GetIndexDelta(n,pos[n]-1); double deltaP_M=MainOp->GetIndexDelta(nP,pos[nP]-1); double deltaPP_M=MainOp->GetIndexDelta(nPP,pos[nPP]-1); double geom_factor=0,A_n=0; //******************************* epsilon,kappa averaging *****************************// //shift up-right shiftCoord[n] = coord[n]+delta*0.5; shiftCoord[nP] = coord[nP]+deltaP*0.25; shiftCoord[nPP] = coord[nPP]+deltaPP*0.25; CSProperties* prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL); switch (n) { case 0: geom_factor = fabs((deltaPP*deltaP/delta)*(coord[0]+fabs(delta)/2))*0.25; break; case 1: geom_factor = fabs(deltaP*deltaPP/(delta*coord[0]))*0.25; break; case 2: geom_factor = fabs((deltaPP/delta) * (pow(coord[0]+fabs(deltaP)/2.0,2.0) - pow(coord[0],2.0)))*0.25; break; } geom_factor*=gridDelta; if (prop) { CSPropMaterial* mat = prop->ToMaterial(); inEC[0] = mat->GetEpsilonWeighted(n,shiftCoord)*geom_factor*__EPS0__; inEC[1] = mat->GetKappaWeighted(n,shiftCoord)*geom_factor; } else { inEC[0] = 1*geom_factor*__EPS0__; inEC[1] = 0; } //shift up-left shiftCoord[n] = coord[n]+delta*0.5; shiftCoord[nP] = coord[nP]-deltaP_M*0.25; shiftCoord[nPP] = coord[nPP]+deltaPP*0.25; prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL); switch (n) { case 0: geom_factor = fabs((deltaPP*deltaP_M/delta)*(coord[0]+fabs(delta)/2))*0.25; break; case 1: geom_factor = fabs(deltaP_M*deltaPP/(delta*coord[0]))*0.25; break; case 2: geom_factor = fabs((deltaPP/delta) * (pow(coord[0],2.0) - pow(coord[0]-fabs(deltaP_M)/2.0,2.0)))*0.25; break; } geom_factor*=gridDelta; if (prop) { CSPropMaterial* mat = prop->ToMaterial(); inEC[0] += mat->GetEpsilonWeighted(n,shiftCoord)*geom_factor*__EPS0__; inEC[1] += mat->GetKappaWeighted(n,shiftCoord)*geom_factor; } else { inEC[0] += 1*geom_factor*__EPS0__; inEC[1] += 0; } //shift down-right shiftCoord[n] = coord[n]+delta*0.5; shiftCoord[nP] = coord[nP]+deltaP*0.25; shiftCoord[nPP] = coord[nPP]-deltaPP_M*0.25; prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL); switch (n) { case 0: geom_factor = fabs((deltaPP_M*deltaP/delta)*(coord[0]+fabs(delta)/2))*0.25; break; case 1: geom_factor = fabs(deltaP*deltaPP_M/(delta*coord[0]))*0.25; break; case 2: geom_factor = fabs((deltaPP_M/delta) * (pow(coord[0]+fabs(deltaP)/2.0,2.0) - pow(coord[0],2.0)))*0.25; break; } geom_factor*=gridDelta; if (prop) { CSPropMaterial* mat = prop->ToMaterial(); inEC[0] += mat->GetEpsilonWeighted(n,shiftCoord)*geom_factor*__EPS0__; inEC[1] += mat->GetKappaWeighted(n,shiftCoord)*geom_factor; } else { inEC[0] += 1*geom_factor*__EPS0__; inEC[1] += 0; } //shift down-left shiftCoord[n] = coord[n]+delta*0.5; shiftCoord[nP] = coord[nP]-deltaP_M*0.25; shiftCoord[nPP] = coord[nPP]-deltaPP_M*0.25; prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL); switch (n) { case 0: geom_factor = fabs((deltaPP_M*deltaP_M/delta)*(coord[0]+fabs(delta)/2))*0.25; break; case 1: geom_factor = fabs(deltaP_M*deltaPP_M/(delta*coord[0]))*0.25; break; case 2: geom_factor = fabs((deltaPP_M/delta) * (pow(coord[0],2.0) - pow(coord[0]-fabs(deltaP_M)/2.0,2.0)))*0.25; break; } geom_factor*=gridDelta; if (prop) { CSPropMaterial* mat = prop->ToMaterial(); inEC[0] += mat->GetEpsilonWeighted(n,shiftCoord)*geom_factor*__EPS0__; inEC[1] += mat->GetKappaWeighted(n,shiftCoord)*geom_factor; } else { inEC[0] += 1*geom_factor*__EPS0__; inEC[1] += 0; } //******************************* mu,sigma averaging *****************************// //shift down shiftCoord[n] = coord[n]-delta_M*0.25; shiftCoord[nP] = coord[nP]+deltaP*0.5; shiftCoord[nPP] = coord[nPP]+deltaPP*0.5; prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL); double delta_n = fabs(delta_M); if (n==1) { delta_n = delta_n * fabs(coord[0]+0.5*fabs(deltaPP)); //multiply delta-angle by radius } if (prop) { CSPropMaterial* mat = prop->ToMaterial(); inEC[2] = delta_n / mat->GetMueWeighted(n,shiftCoord); if (mat->GetSigma(n)) inEC[3] = delta_n / mat->GetSigmaWeighted(n,shiftCoord); else inEC[3] = 0; } else { inEC[2] = delta_n; inEC[3] = 0; } //shift up shiftCoord[n] = coord[n]+delta*0.25; shiftCoord[nP] = coord[nP]+deltaP*0.5; shiftCoord[nPP] = coord[nPP]+deltaPP*0.5; prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL); delta_n = fabs(delta); if (n==1) { delta_n = delta_n * fabs(coord[0]+0.5*fabs(deltaPP)); //multiply delta-angle by radius } if (prop) { CSPropMaterial* mat = prop->ToMaterial(); inEC[2] += delta_n / mat->GetMueWeighted(n,shiftCoord); if (mat->GetSigmaWeighted(n,shiftCoord)) inEC[3] += delta_n/mat->GetSigmaWeighted(n,shiftCoord); else inEC[3] = 0; } else { inEC[2] += delta_n; inEC[3] = 0; } A_n = fabs(deltaP*deltaPP); if (n==0) //x-direction n==0 -> r; nP==1 -> alpha; nPP==2 -> z { A_n = A_n * coord[0]; } if (n==2) //z-direction n==2 -> z; nP==0 -> r; nPP==1 -> alpha { A_n = fabs(deltaPP) * (pow(coord[0]+fabs(deltaP),2.0) - pow(coord[0],2.0))*0.5; } inEC[2] = gridDelta * A_n * 2 * __MUE0__ / inEC[2]; if (inEC[3]) inEC[3]=gridDelta * A_n * 2 / inEC[3]; // if ((n==1) && (pos[1]==0) && (pos[2]==0)) // cerr << inEC[2]/(coord[0]) << endl; // cerr << n << " -> " << pos[0] << " " << pos[1] << " " << pos[2] << " " << inEC[2] << endl; return true; } bool Operator_Cylinder::Calc_EffMatPos(int n, const unsigned int* pos, double* inMat) const { __OP_CYLINDER_BASE_CLASS__::Calc_EffMatPos(n, pos, inMat); // H_rho is not defined at position r==0 if (CC_R0_included && (n==0) && (pos[0]==0)) { inMat[2] = 0; inMat[3] = 0; } // E_alpha is not defined at position r==0 if (CC_R0_included && (n==1) && (pos[0]==0)) { inMat[0]=0; inMat[1]=0; } return true; } void Operator_Cylinder::AddExtension(Operator_Extension* op_ext) { if (op_ext->IsCylinderCoordsSave()) m_Op_exts.push_back(op_ext); else cerr << "Operator_Cylinder::AddExtension: Warning: Operator extension \"" << op_ext->GetExtensionName() << "\" is not compatible with cylinder-coords!! skipping...!" << endl; } double Operator_Cylinder::CalcTimestep() { return CalcTimestep_Var1(); }