/* * Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "tools/global.h" #include "tools/vtk_file_io.h" #include "processfields.h" #include "FDTD/engine_interface_fdtd.h" ProcessFields::ProcessFields(Engine_Interface_Base* eng_if) : Processing(eng_if) { m_DumpType = E_FIELD_DUMP; // vtk-file is default m_fileType = VTK_FILETYPE; m_SampleType = NONE; m_Dump_File = NULL; SetPrecision(6); m_dualTime = false; // dump box should be always inside the snapped lines m_SnapMethod = 1; for (int n=0; n<3; ++n) { numLines[n]=0; posLines[n]=NULL; discLines[n]=NULL; subSample[n]=1; optResolution[n]=0; } } ProcessFields::~ProcessFields() { delete m_Dump_File; m_Dump_File = NULL; for (int n=0; n<3; ++n) { delete[] posLines[n]; posLines[n]=NULL; delete[] discLines[n]; discLines[n]=NULL; } } string ProcessFields::GetFieldNameByType(DumpType type) { switch (type) { case E_FIELD_DUMP: return "E-Field"; case H_FIELD_DUMP: return "H-Field"; case J_FIELD_DUMP: return "J-Field"; case ROTH_FIELD_DUMP: return "RotH-Field"; case SAR_LOCAL_DUMP: return "SAR-local"; } return "unknown field"; } void ProcessFields::InitProcess() { if (Enabled==false) return; CalcMeshPos(); if (m_fileType==VTK_FILETYPE) { delete m_Dump_File; m_Dump_File = new VTK_File_IO(m_filename,(int)m_Mesh_Type); #ifdef OUTPUT_IN_DRAWINGUNITS double discScaling = 1; #else double discScaling = Op->GetGridDelta(); #endif m_Dump_File->SetMeshLines(discLines,numLines,discScaling); m_Dump_File->SetNativeDump(g_settings.NativeFieldDumps()); } } void ProcessFields::SetDumpMode(Engine_Interface_Base::InterpolationType mode) { m_Eng_Interface->SetInterpolationType(mode); if (mode==Engine_Interface_Base::CELL_INTERPOLATE) m_dualMesh=true; else if (mode==Engine_Interface_Base::NODE_INTERPOLATE) m_dualMesh=false; //else keep the preset/user defined case } void ProcessFields::DefineStartStopCoord(double* dstart, double* dstop) { Processing::DefineStartStopCoord(dstart,dstop); // normalize order of start and stop for (int n=0; n<3; ++n) { if (start[n]>stop[n]) { unsigned int help = start[n]; start[n]=stop[n]; stop[n]=help; } } } double ProcessFields::CalcTotalEnergyEstimate() const { return m_Eng_Interface->CalcFastEnergy(); } void ProcessFields::SetSubSampling(unsigned int subSampleRate, int dir) { if (dir>2) return; if (dir<0) { subSample[0]=subSampleRate; subSample[1]=subSampleRate; subSample[2]=subSampleRate; } else subSample[dir]=subSampleRate; m_SampleType = SUBSAMPLE; } void ProcessFields::SetOptResolution(double optRes, int dir) { if (dir>2) return; if (dir<0) { optResolution[0]=optRes; optResolution[1]=optRes; optResolution[2]=optRes; } else optResolution[dir]=optRes; m_SampleType = OPT_RESOLUTION; } void ProcessFields::CalcMeshPos() { if ((m_SampleType==SUBSAMPLE) || (m_SampleType==NONE)) { vector tmp_pos; for (int n=0; n<3; ++n) { // construct new discLines tmp_pos.clear(); for (unsigned int i=start[n]; i<=stop[n]; i+=subSample[n]) tmp_pos.push_back(i); numLines[n] = tmp_pos.size(); delete[] discLines[n]; discLines[n] = new double[numLines[n]]; delete[] posLines[n]; posLines[n] = new unsigned int[numLines[n]]; for (unsigned int i=0; iGetDiscLine(n,tmp_pos.at(i),m_dualMesh); } } } if ((m_SampleType==OPT_RESOLUTION)) { vector tmp_pos; double oldPos=0; for (int n=0; n<3; ++n) { // construct new discLines tmp_pos.clear(); tmp_pos.push_back(start[n]); oldPos=Op->GetDiscLine(n,start[n],m_dualMesh); if (stop[n]==0) tmp_pos.push_back(stop[n]); else for (unsigned int i=start[n]+1; i<=stop[n]-1; ++i) { if ( (Op->GetDiscLine(n,i+1,m_dualMesh)-oldPos) >= optResolution[n]) { tmp_pos.push_back(i); oldPos=Op->GetDiscLine(n,i,m_dualMesh); } } if (start[n]!=stop[n]) tmp_pos.push_back(stop[n]); numLines[n] = tmp_pos.size(); delete[] discLines[n]; discLines[n] = new double[numLines[n]]; delete[] posLines[n]; posLines[n] = new unsigned int[numLines[n]]; for (unsigned int i=0; iGetDiscLine(n,tmp_pos.at(i),m_dualMesh); } } } } bool ProcessFields::WriteMesh2HDF5(string filename, string groupName, unsigned int const* numLines, double const* const* discLines, MeshType meshT, double discLines_scaling) { H5::H5File file( filename, H5F_ACC_RDWR ); H5::Group hdf_group( file.openGroup( groupName )); string names[] = {"x","y","z"}; if (meshT==CYLINDRICAL_MESH) { names[0]="rho"; names[1]="alpha"; } H5::Group* group = new H5::Group( hdf_group.createGroup( "/Mesh" )); for (int n=0; n<3; ++n) { hsize_t dimsf[1]; // dataset dimensions dimsf[0] = numLines[n]; H5::DataSpace dataspace( 1, dimsf ); H5::FloatType datatype( H5::PredType::NATIVE_FLOAT ); H5::DataSet dataset = group->createDataSet( names[n].c_str(), datatype, dataspace ); //convert to float... float* array = new float[numLines[n]]; for (unsigned int i=0; i const* const* const* const* array, unsigned int const* numLines, float weight, float frequency) { const H5std_string FILE_NAME(filename); const H5std_string DATASET_NAME_RE( name + "_real"); const H5std_string DATASET_NAME_IM( name + "_imag"); H5::H5File file( FILE_NAME, H5F_ACC_RDWR ); H5::Group group( file.openGroup( groupName )); hsize_t t_dimsf[] = {1}; H5::DataSpace t_dataspace( 1, t_dimsf ); hsize_t dimsf[4]; // dataset dimensions dimsf[0] = 3; dimsf[1] = numLines[2]; dimsf[2] = numLines[1]; dimsf[3] = numLines[0]; H5::DataSpace dataspace( 4, dimsf ); H5::FloatType datatype( H5::PredType::NATIVE_FLOAT ); //create and write real part H5::DataSet dataset = group.createDataSet( DATASET_NAME_RE, datatype, dataspace ); H5::Attribute attr = dataset.createAttribute("frequency",H5::PredType::NATIVE_FLOAT,t_dataspace); attr.write( H5::PredType::NATIVE_FLOAT , &frequency); // I have not the slightest idea why this array-copy action is necessary... but it's the only way hdf5 does what it is supposed to do anyway!! // at least it is save in case FDTD_FLOAT was defined as double... // why does hdf5 write the dimensions backwards??? or matlab??? unsigned long pos = 0; float *hdf5array = new float[3*numLines[0]*numLines[1]*numLines[2]]; for (int n=0; n<3; ++n) { for (unsigned int k=0; k(numLines); switch (m_DumpType) { case E_FIELD_DUMP: case SAR_LOCAL_DUMP: for (unsigned int i=0; iGetEField(pos,out); field[0][i][j][k] = out[0]; field[1][i][j][k] = out[1]; field[2][i][j][k] = out[2]; } } } return field; case H_FIELD_DUMP: for (unsigned int i=0; iGetHField(pos,out); field[0][i][j][k] = out[0]; field[1][i][j][k] = out[1]; field[2][i][j][k] = out[2]; } } } return field; case J_FIELD_DUMP: for (unsigned int i=0; iGetJField(pos,out); field[0][i][j][k] = out[0]; field[1][i][j][k] = out[1]; field[2][i][j][k] = out[2]; } } } return field; case ROTH_FIELD_DUMP: for (unsigned int i=0; iGetRotHField(pos,out); field[0][i][j][k] = out[0]; field[1][i][j][k] = out[1]; field[2][i][j][k] = out[2]; } } } return field; } cerr << "ProcessFields::CalcField(): Error, unknown dump type..." << endl; return field; }