% % Tutorials / horn antenna % % Describtion at: % http://openems.de/index.php/Tutorial:_Horn_Antenna % % Tested with % - Matlab 2011a / Octave 3.4.3 % - openEMS v0.0.27 % % (C) 2011,2012 Thorsten Liebig close all clear clc %% setup the simulation physical_constants; unit = 1e-3; % all length in mm % horn width in x-direction horn.width = 20; % horn height in y-direction horn.height = 30; % horn length in z-direction horn.length = 50; horn.feed_length = 50; horn.thickness = 2; % horn opening angle in x, y horn.angle = [20 20]*pi/180; % size of the simulation box SimBox = [200 200 200]; % frequency range of interest f_start = 10e9; f_stop = 20e9; % frequency of interest f0 = 15e9; %waveguide TE-mode definition TE_mode = 'TE10'; a = horn.width; b = horn.height; %% setup FDTD parameter & excitation function FDTD = InitFDTD('EndCriteria', 1e-4); FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start)); BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; % boundary conditions FDTD = SetBoundaryCond( FDTD, BC ); %% setup CSXCAD geometry & mesh % currently, openEMS cannot automatically generate a mesh max_res = c0 / (f_stop) / unit / 15; % cell size: lambda/20 CSX = InitCSX(); %create fixed lines for the simulation box, substrate and port mesh.x = [-SimBox(1)/2 -a/2 a/2 SimBox(1)/2]; mesh.x = SmoothMeshLines( mesh.x, max_res, 1.4); % create a smooth mesh between specified fixed mesh lines mesh.y = [-SimBox(2)/2 -b/2 b/2 SimBox(2)/2]; mesh.y = SmoothMeshLines( mesh.y, max_res, 1.4 ); %create fixed lines for the simulation box and given number of lines inside the substrate mesh.z = [-horn.feed_length 0 SimBox(3)-horn.feed_length ]; mesh.z = SmoothMeshLines( mesh.z, max_res, 1.4 ); CSX = DefineRectGrid( CSX, unit, mesh ); %% create horn % horn feed rect waveguide CSX = AddMetal(CSX, 'horn'); start = [-a/2-horn.thickness -b/2 mesh.z(1)]; stop = [-a/2 b/2 0]; CSX = AddBox(CSX,'horn',10,start,stop); start = [a/2+horn.thickness -b/2 mesh.z(1)]; stop = [a/2 b/2 0]; CSX = AddBox(CSX,'horn',10,start,stop); start = [-a/2-horn.thickness b/2+horn.thickness mesh.z(1)]; stop = [ a/2+horn.thickness b/2 0]; CSX = AddBox(CSX,'horn',10,start,stop); start = [-a/2-horn.thickness -b/2-horn.thickness mesh.z(1)]; stop = [ a/2+horn.thickness -b/2 0]; CSX = AddBox(CSX,'horn',10,start,stop); % horn opening p(2,1) = a/2; p(1,1) = 0; p(2,2) = a/2 + sin(horn.angle(1))*horn.length; p(1,2) = horn.length; p(2,3) = -a/2 - sin(horn.angle(1))*horn.length; p(1,3) = horn.length; p(2,4) = -a/2; p(1,4) = 0; CSX = AddLinPoly( CSX, 'horn', 10, 1, -horn.thickness/2, p, horn.thickness, 'Transform', {'Rotate_X',horn.angle(2),'Translate',['0,' num2str(-b/2-horn.thickness/2) ',0']}); CSX = AddLinPoly( CSX, 'horn', 10, 1, -horn.thickness/2, p, horn.thickness, 'Transform', {'Rotate_X',-horn.angle(2),'Translate',['0,' num2str(b/2+horn.thickness/2) ',0']}); p(1,1) = b/2+horn.thickness; p(2,1) = 0; p(1,2) = b/2+horn.thickness + sin(horn.angle(2))*horn.length; p(2,2) = horn.length; p(1,3) = -b/2-horn.thickness - sin(horn.angle(2))*horn.length; p(2,3) = horn.length; p(1,4) = -b/2-horn.thickness; p(2,4) = 0; CSX = AddLinPoly( CSX, 'horn', 10, 0, -horn.thickness/2, p, horn.thickness, 'Transform', {'Rotate_Y',-horn.angle(2),'Translate',[ num2str(-a/2-horn.thickness/2) ',0,0']}); CSX = AddLinPoly( CSX, 'horn', 10, 0, -horn.thickness/2, p, horn.thickness, 'Transform', {'Rotate_Y',+horn.angle(2),'Translate',[ num2str(a/2+horn.thickness/2) ',0,0']}); % horn aperture A = (a + 2*sin(horn.angle(1))*horn.length)*unit * (b + 2*sin(horn.angle(2))*horn.length)*unit; %% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% start=[-a/2 -b/2 mesh.z(8) ]; stop =[ a/2 b/2 mesh.z(1)+horn.feed_length/2 ]; [CSX, port] = AddRectWaveGuidePort( CSX, 0, 1, start, stop, 2, a*unit, b*unit, TE_mode, 1); %% nf2ff calc start = [mesh.x(9) mesh.y(9) mesh.z(9)]; stop = [mesh.x(end-8) mesh.y(end-8) mesh.z(end-8)]; [CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop, 'Directions', [1 1 1 1 0 1]); %% prepare simulation folder Sim_Path = 'tmp_Horn_Antenna'; Sim_CSX = 'horn_ant.xml'; [status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory [status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder %% write openEMS compatible xml-file WriteOpenEMS([Sim_Path '/' Sim_CSX], FDTD, CSX); %% show the structure CSXGeomPlot([Sim_Path '/' Sim_CSX]); %% run openEMS RunOpenEMS(Sim_Path, Sim_CSX); %% postprocessing & do the plots freq = linspace(f_start,f_stop,201); port = calcPort(port, Sim_Path, freq); Zin = port.uf.tot ./ port.if.tot; s11 = port.uf.ref ./ port.uf.inc; P_in = 0.5 * port.uf.inc .* conj( port.if.inc ); % antenna feed power plot( freq/1e9, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 ); ylim([-60 0]); grid on title( 'reflection coefficient S_{11}' ); xlabel( 'frequency f / GHz' ); ylabel( 'reflection coefficient |S_{11}|' ); drawnow %% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % calculate the far field at phi=0 degrees and at phi=90 degrees thetaRange = (0:2:359) - 180; disp( 'calculating far field at phi=[0 90] deg...' ); nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, [0 90]*pi/180); Dlog=10*log10(nf2ff.Dmax); G_a = 4*pi*A/(c0/f0)^2; e_a = nf2ff.Dmax/G_a; % display some antenna parameter disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']); disp( ['directivity: Dmax = ' num2str(Dlog) ' dBi'] ); disp( ['aperture efficiency: e_a = ' num2str(e_a*100) '%'] ); %% % normalized directivity figure plotFFdB(nf2ff,'xaxis','theta','param',[1 2]); drawnow % D_log = 20*log10(nf2ff.E_norm{1}/max(max(nf2ff.E_norm{1}))); % D_log = D_log + 10*log10(nf2ff.Dmax); % plot( nf2ff.theta, D_log(:,1) ,'k-', nf2ff.theta, D_log(:,2) ,'r-' ); % polar plot figure polarFF(nf2ff,'xaxis','theta','param',[1 2],'logscale',[-40 20], 'xtics', 12); drawnow % polar( nf2ff.theta, nf2ff.E_norm{1}(:,1) ) %% calculate 3D pattern phiRange = sort( unique( [-180:5:-100 -100:2.5:-50 -50:1:50 50:2.5:100 100:5:180] ) ); thetaRange = sort( unique([ 0:1:50 50:2.:100 100:5:180 ])); disp( 'calculating 3D far field...' ); nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, phiRange*pi/180, 'Verbose',2,'Outfile','nf2ff_3D.h5'); figure plotFF3D(nf2ff); %% E_far_normalized = nf2ff.E_norm{1}/max(nf2ff.E_norm{1}(:)); DumpFF2VTK([Sim_Path '/Horn_Pattern.vtk'],E_far_normalized,thetaRange,phiRange,'scale',1e-3);