function [S11,beta,ZL] = calcPort( portstruct, SimDir, f, ref_shift ) %[S11,beta,ZL] = calcMSLPort( portstruct, SimDir, [f], [ref_shift] ) % % Calculate the reflection coefficient S11, the propagation constant beta % of the MSL-port and the characteristic impedance ZL of the MSL-port. % The port is to be created by AddMSLPort(). % % input: % portstruct: return value of AddMSLPort() % SimDir: directory, where the simulation files are % f: (optional) frequency vector for DFT % ref_shift: (optional) reference plane shift measured from start of port (in drawing units) % % output: % S11: reflection coefficient (normalized to ZL) % beta: propagation constant % ZL: characteristic line impedance % % reference: W. K. Gwarek, "A Differential Method of Reflection Coefficient Extraction From FDTD Simulations", % IEEE Microwave and Guided Wave Letters, Vol. 6, No. 5, May 1996 % % openEMS matlab interface % ----------------------- % (C) 2010 Sebastian Held % See also AddMSLPort %DEBUG % save('/tmp/test.mat', 'portstruct', 'SimDir', 'f', 'nargin' ) % load('/tmp/test.mat') % check if portstruct.v_delta(1) ~= portstruct.v_delta(2) warning( 'openEMS:calcPort:mesh', 'mesh is not equidistant; expect degraded accuracy' ); end if nargin < 3 f = []; end % read time domain data filename = ['port_ut' num2str(portstruct.nr)]; U = ReadUI( {[filename 'A'],[filename 'B'],[filename 'C']}, SimDir, f ); filename = ['port_it' num2str(portstruct.nr)]; I = ReadUI( {[filename 'A'],[filename 'B']}, SimDir, f ); f = U.FD{2}.f; Et = U.FD{2}.val; dEt = (U.FD{3}.val - U.FD{1}.val) / (sum(abs(portstruct.v_delta(1:2))) * portstruct.drawingunit); Ht = (I.FD{1}.val + I.FD{2}.val)/2; % space averaging: Ht is now defined at the same pos as Et dHt = (I.FD{2}.val - I.FD{1}.val) / (abs(portstruct.i_delta(1)) * portstruct.drawingunit); beta = sqrt( - dEt .* dHt ./ (Ht .* Et) ); beta(real(beta) < 0) = -beta(real(beta) < 0); % determine correct sign (unlike the paper) % determine S11 A = sqrt( Et .* dHt ./ (Ht .* dEt) ); A(imag(A) > 0) = -A(imag(A) > 0); % determine correct sign (unlike the paper) S11 = (A - 1) ./ (A + 1); % determine S11_corrected delta_e = sum(portstruct.v_delta(1:2))/2 * portstruct.drawingunit; delta_h = portstruct.i_delta(1) * portstruct.drawingunit; S11_corrected = sqrt( Et .* (dHt ./ (sin(beta.*delta_h*.5)/(beta*delta_h*.5))) ./ ((Ht ./ cos(beta*delta_h*.5)) .* (dEt ./ (sin(beta*delta_e)./(beta*delta_e))))); S11_corrected(imag(S11_corrected) > 0) = -S11_corrected(imag(S11_corrected) > 0); % determine correct sign (unlike the paper) S11_corrected = (S11_corrected-1) ./ (S11_corrected+1); % my own solution... temp = sqrt(-dHt .* dEt ./ (Ht .* Et)); S11 = (-1i * dEt + Et .* temp) ./ (Et .* temp + 1i * dEt); % solution 1 % S11 = (-1i * dEt - Et .* temp) ./ (-Et .* temp + 1i * dEt); % solution 2 % % determine ZL % Et_forward = Et ./ (1 + S11); % Ht_forward = Ht ./ (1 - S11); % ZL = Et_forward ./ Ht_forward; % % % determine ZL_corrected % Et_forward_corrected = Et ./ (1 + S11_corrected); % Ht_forward_corrected = Ht ./ (1 - S11_corrected); % ZL_corrected = Et_forward_corrected ./ Ht_forward_corrected; % determine ZL ZL = sqrt(Et .* dEt ./ (Ht .* dHt)); % reference plane shift (lossless) if (nargin > 3) % renormalize the shift to the measurement plane ref_shift = ref_shift - portstruct.measplanepos; ref_shift = ref_shift * portstruct.drawingunit; S11 = S11 .* exp(2i*real(beta)*ref_shift); S11_corrected = S11_corrected .* exp(2i*real(beta)*ref_shift); end